Skip to main content

Advertisement

Log in

The subpopulation of microglia expressing functional muscarinic acetylcholine receptors expands in stroke and Alzheimer’s disease

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Microglia undergo a process of activation in pathology which is controlled by many factors including neurotransmitters. We found that a subpopulation (11 %) of freshly isolated adult microglia respond to the muscarinic acetylcholine receptor agonist carbachol with a Ca2+ increase and a subpopulation of similar size (16 %) was observed by FACS analysis using an antibody against the M3 receptor subtype. The carbachol-sensitive population increased in microglia/brain macrophages isolated from tissue of mouse models for stroke (60 %) and Alzheimer’s disease (25 %), but not for glioma and multiple sclerosis. Microglia cultured from adult and neonatal brain contained a carbachol-sensitive subpopulation (8 and 9 %), which was increased by treatment with interferon-γ to around 60 %. This increase was sensitive to blockers of protein synthesis and correlated with an upregulation of the M3 receptor subtype and with an increased expression of MHC-I and MHC-II. Carbachol was a chemoattractant for microglia and decreased their phagocytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Biber K, Neumann H, Inoue K, Boddeke HWGM (2007) Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30:596–602

    Article  CAS  PubMed  Google Scholar 

  • Boucsein C, Zacharias R, Färber K, Pavlovic S, Hanisch U-K, Kettenmann H (2003) Purinergic receptors on microglial cells: functional expression in acute brain slices and modulation of microglial activation in vitro. Eur J Neurosci 17:2267–2276

  • Chu CQ, Wittmer S, Dalton DK (2000) Failure to suppress the expansion of the activated CD4 T cell population in interferon gamma-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J Exp Med 192:123–128

  • Colton CA, Yao J, Keri JE, Gilbert D (1992) Regulation of microglial function by interferons. J Neuroimmunol 40:89–98

    Article  CAS  PubMed  Google Scholar 

  • De Haas AH, Boddeke HWGM, Biber K (2008) Region-specific expression of immunoregulatory proteins on microglia in the healthy CNS. Glia 56:888–894

    Article  PubMed  Google Scholar 

  • Endres M, Biniszkiewicz D, Sobol RW, Harms C, Ahmadi M, Lipski A, Katchanov J, Mergenthaler P, Dirnagl U, Wilson SH, Meisel A, Jaenisch R (2004) Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase. J Clin Invest 113:1711–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flügel A, Berkowicz T, Ritter T, Labeur M, Jenne DE, Li Z, Ellwart JW, Willem M, Lassmann H, Wekerle H (2001) Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity 14:547–560

    Article  PubMed  Google Scholar 

  • Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giulian D, Baker TJ (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6:2163–2178

    CAS  PubMed  Google Scholar 

  • Hanisch U-K, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Kataoka K, Hayakawa T, Kuroda R, Yuguchi T, Yamada K (1991) Cholinergic deafferentation after focal cerebral infarct in rats. Stroke 22:1291–1296

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77:10–18

    Article  CAS  PubMed  Google Scholar 

  • Krabbe G, Matyash V, Pannasch U, Mamer L, Boddeke HWGM, Kettenmann H (2012) Activation of serotonin receptors promotes microglial injury-induced motility but attenuates phagocytic activity. Brain Behav Immun 26:419–428

    Article  CAS  PubMed  Google Scholar 

  • Kuhn SA, van Landeghem FKH, Zacharias R, Färber K, Rappert A, Pavlovic S, Hoffmann A, Nolte C, Kettenmann H (2004) Microglia express GABA(B) receptors to modulate interleukin release. Mol Cell Neurosci 25:312–322

  • Marascuilo LA (1966) Large-sample multiple comparisons. Psychol Bull 65:280–290

    Article  CAS  PubMed  Google Scholar 

  • Marim FM, Silveira TN, Lima DS, Zamboni DS, (2010) A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells. PLoS One 5:e15263

  • Nikodemova M, Watters JJ (2012) Efficient isolation of live microglia with preserved phenotypes from adult mouse brain. J Neuroinflammation 9:147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30:527–535

    Article  CAS  PubMed  Google Scholar 

  • Scheffel J, Regen T, Van Rossum D, Seifert S, Ribes S, Nau R, Parsa R, Harris RA, Boddeke HWGM, Chuang H-N, Pukrop T, Wessels JT, Jürgens T, Merkler D, Brück W, Schnaars M, Simons M, Kettenmann H, Hanisch U-K (2012) Toll-like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia. Glia 60:1930–1943

  • Seifert S, Pannell M, Uckert W, Faerber K, Kettenmann H (2011) Transmitter- and hormone-activated Ca(2+) responses in adult microglia/brain macrophages in situ recorded after viral transduction of a recombinant Ca(2+) sensor. Cell Calcium 49:365–375

  • Smith ME, van der Maesen K, Somera FP (1998) Macrophage and microglial responses to cytokines in vitro: phagocytic activity, proteolytic enzyme release, and free radical production. J Neurosci Res 54:68–78

    Article  CAS  PubMed  Google Scholar 

  • Stalder AK, Ermini F, Bondolfi L, Krenger W, Burbach GJ, Deller T, Coomaraswamy J, Staufenbiel M, Landmann R, Jucker M (2005) Invasion of Hematopoietic Cells into the Brain of Amyloid Precursor Protein Transgenic Mice. J Neurosci 25:11125-11132

  • Tremblay M-E, Majewska AK (2011) A role for microglia in synaptic plasticity? Commun Integr Biol 4:220–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Verzani J (2005) Using R for introductory statistics. Chapman and Hall/CRC, Florida

  • Waiczies H, Millward JM, Lepore S, Infante-Duarte C, Pohlmann A, Niendorf T, Waiczies S (2012) Identification of Cellular infiltrates during early stages of brain inflammation with magnetic resonance microscopy. PLoS One 7:e32796

  • Wess J, Eglen RM, Gautam D (2007) Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 6:721–733

  • Whittemore ER, Korotzer AR, Etebari A, Cotman CW (1993) Carbachol increases intracellular free calcium in cultured rat microglia. Brain Res 621:59–64

    Article  CAS  PubMed  Google Scholar 

  • Wiggins H, Rappoport J (2010) An agarose spot assay for chemotactic invasion. Biotechniques 48:121–124

    Article  CAS  PubMed  Google Scholar 

  • Wilson EB (1927) Probable inference, the law of succession, and statistical inference. J Am Stat Assoc 22:209–212

    Article  Google Scholar 

  • Zhang L, McLarnon JG, Goghari V, Lee YB, Kim SU, Krieger C (1998) Cholinergic agonists increase intracellular Ca2 + in cultured human microglia. Neurosci Lett 255:33–36

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Goncalves R, Mosser DM (2008) The isolation and characterization of murine macrophages. In: Coligan JE (eds) Current protocols in immunology. Chapter, unit-14.1

Download references

Acknowledgments

This project was funded by Deutsche Forschungsgemeinschaft (SFB-TRR43) and Neurocure. We would like to thank Frank Heppner, Stefan Prokop and Mathias Jucker for providing the APPPS1 mice. We would also like to thank Regina Piske and Irene Haupt for excellent technical assistance. Vincent Prinz is a participant in the Charité Clinical Scientist Program funded by the Charité Universitätsmedizin Berlin and the Berlin Institute of Health.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Kettenmann.

Additional information

S. A. Wolf and H. Kettenmann contributed equally as last authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pannell, M., Meier, M.A., Szulzewsky, F. et al. The subpopulation of microglia expressing functional muscarinic acetylcholine receptors expands in stroke and Alzheimer’s disease. Brain Struct Funct 221, 1157–1172 (2016). https://doi.org/10.1007/s00429-014-0962-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0962-y

Keywords

Navigation