Skip to main content

Advertisement

Log in

Decrease of mGluR5 receptor density goes parallel with changes in enkephalin and substance P immunoreactivity in Huntington’s disease: a preliminary investigation in the postmortem human brain

  • Short Communication
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Group 1 metabotropic glutamate subtype 5 receptors (mGluR5) contribute to the control of motor behavior by regulating the balance between excitation and inhibition of outputs in the basal ganglia. The density of these receptors is increased in patients with Parkinson’s disease and motor complications. We hypothesized that similar changes may occur in Huntington’s disease (HD) and aimed at testing this hypothesis in a preliminary experimental series in postmortem human brain material obtained from HD patients. Using autoradiography, we analyzed mGluR5 density in the putamen, caudate nucleus and cerebellum (control region) in postmortem tissue samples from three patients with HD and three controls with two mGluR5-specific radioligands ([3H]ABP688 and [11C]ABP688). The density of enkephalin (Enk)- or substance P (SP)-containing neurons was assessed using immunohistochemical and cell-counting methods. [3H]ABP688 binding in HD was reduced in the caudate (−70.4 %, P < 0.001), in the putamen (−33.3 %, P = 0.053), and in the cerebellum (−8.79 %, P = 0.930) vs controls. Results with [11C]ABP688 were similar; there was good correlation between [11C]ABP688 and [3H]ABP688 binding ratios. Total cell density was similar in all three brain regions in HD patients and controls. Neuronal density was 69 % lower in the caudate (P = 0.002) and 64 % lower in the putamen (P < 0.001) of HD patients vs controls. Both direct and indirect pathways were affected, with ≥90 % decrease in the density of Enk- and SP-containing neurons in the caudate and putamen of HD patients vs controls (P < 0.001). In contrast to earlier observations in PD, in HD, compared to controls, the mGluR5 density was significantly lower in the caudate nucleus. The decrease in neuronal density suggests that neuronal loss was largely responsible for the observed decrease in mGluR5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ahlskog JE, Muenter MD (2001) Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 16:448–458

    Article  CAS  PubMed  Google Scholar 

  • Airaksinen AJ, Nag S, Finnema SJ, Mukherjee J, Chattopadhyay S, Gulyás B, Farde L, Halldin C (2008) [11C]cyclopropyl-FLB 457: a PET radioligand for low densities of dopamine D2 receptors. Bioorg Med Chem 16:6467–6473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ametamey SM, Kessler LJ, Honer M, Wyss MT, Buck A, Hintermann S, Auberson YP, Gasparini F, Schubiger PA (2006) Radiosynthesis and preclinical evaluation of 11C-ABP688 as a probe for imaging the metabotropic glutamate receptor subtype 5. J Nucl Med 47:698–705

    CAS  PubMed  Google Scholar 

  • Augood SJ, Faull RL, Love DR, Emson PC (1996) Reduction in enkephalin and substance P messenger RNA in the striatum of early grade Huntington’s disease: a detailed cellular in situ hybridization study. Neuroscience 72:1023–1036

    Article  CAS  PubMed  Google Scholar 

  • Berg D, Godau J, Trenkwalder C, Eggert K, Csoti I, Storch A, Huber H, Morelli-Canelo M, Stamelou M, Ries V, Wolz M, Schneider C, Di Paolo T, Gasparini F, Hariry S, Vandemeulebroecke M, Abi-Saab W, Cooke K, Johns D, Gomez-Mancilla B. (2011) AFQ056 treatment of levodopa-induced dyskinesias: results of 2 randomized controlled trials. Mov Disord 26:1243–1250

  • Canzoniero LMT, Granzotto A, Turetsky DM, Choi DW, Dugan LL, Sensi SL (2013) nNOS(+) striatal neurons, a subpopulation spared in Huntington’s disease, possess functional NMDA receptors but fail to generate mitochondrial ROS in response to an excitotoxic challenge. Front Physiol 16(4):112

  • Cha JH, Kosinski CM, Kerner JA, Alsdorf SA, Mangiarini L, Davies SW, Penney JB, Bates GP, Young AB (1998) Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene. Proc Natl Acad Sci USA 95:6480–6485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cicchetti F, Prensa L, Wu Y, Parent A (2000) Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington’s disease. Brain Res Brain Res Rev 34:80–101

    Article  CAS  PubMed  Google Scholar 

  • Combs JW, Lagunoff D, Benditt EP (1965) Differentiation and proliferation of embryonic mast cells of the rat. J Cell Biol 25:577–592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conn PJ, Battaglia G, Marino MJ, Nicoletti F (2005) Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 6:787–798

    Article  CAS  PubMed  Google Scholar 

  • Dawbarn D, Zamir N, Waters CM, Hunt SP, Emson PC, Brownstein MJ (1986) Peptides derived from prodynorphin are decreased in basal ganglia of Huntington’s disease brains. Brain Res 372:155–158

    Article  CAS  PubMed  Google Scholar 

  • Deng YP, Albin RL, Penney JB, Young AB, Anderson KD, Reiner A (2004) Differential loss of striatal projection systems in Huntington’s disease: a quantitative immunohistochemical study. J Chem Anat 27:143–164

    CAS  Google Scholar 

  • Dutt MK (1980) Method for the demonstration of DNA-phosphate groups and DNA-aldehyde molecules with a basic dye, methylene green. Cell Mol Biol Incl Cyto Enzymol 26:159–163

    CAS  PubMed  Google Scholar 

  • Farkas S, Nagy K, Jia Z, Hortobágyi T, Varrone A, Halldin C, Csiba L, Gulyás B (2012) Signal transduction pathway activity compensates dopamine D(2)/D(3) receptor density changes in Parkinson’s disease: a preliminary comparative human brain receptor autoradiography study with [(3)H]raclopride and [(3)(5)S]GTPgammaS. Brain Res 1453:56–63

    Article  CAS  PubMed  Google Scholar 

  • Feger J, Crossman AR (1984) Identification of different subpopulations of neostriatal neurones projecting to globus pallidus or substantia nigra in the monkey: a retrograde fluorescence double-labelling study. Neurosci Lett 49:7–12

    Article  CAS  PubMed  Google Scholar 

  • Ferrante RJ, Kowall NW, Richardson EP Jr, Bird ED, Martin JB (1986) Topography of enkephalin, substance P and acetylcholinesterase staining in Huntington’s disease striatum. Neurosci Lett 71:283–288

    Article  CAS  PubMed  Google Scholar 

  • Fusco FR, Chen Q, Lamoreaux WJ, Figueredo-Cardenas G, Jiao Y, Coffman JA, Surmeier DJ, Honig MG, Carlock LR, Reiner A (1999) Cellular localization of huntingtin in striatal and cortical neurons in rats: lack of correlation with neuronal vulnerability in Huntington’s disease. J Neurosci 19:1189–1202

    CAS  PubMed  Google Scholar 

  • Fuxe K, Marcellino D, Leo G, Agnati LF (2010) Molecular integration via allosteric interactions in receptor heteromers. A working hypothesis. Curr Opin Pharmacol 10:14–22

    Article  CAS  PubMed  Google Scholar 

  • Galvan A, Wichmann T (2007) GABAergic circuits in the basal ganglia and movement disorders. Prog Brain Res 160:287–312

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR, Young WS 3rd (1998) Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Res 460:161–167

    Article  Google Scholar 

  • Gulyás B, Brockschnieder D, Nag S, Pavlova E, Kása P, Beliczai Z, Légrádi A, Gulya K, Thiele A, Dyrks T, Halldin C (2010) The norepinephrine transporter (NET) radioligand (S, S)-[18F]FMeNER-D2 shows significant decreases in NET density in the human brain in Alzheimer’s disease: a post-mortem autoradiographic study. Neurochem Int 56:789–798

    Article  PubMed  Google Scholar 

  • Gulyás B, Pavlova E, Kása P, Gulya K, Bakota L, Várszegi S, Keller E, Horváth MC, Nag S, Hermecz I, Magyar K, Halldin C (2011) Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-l-deprenyl using whole hemisphere autoradiography. Neurochem Intl 58:60–68

    Article  Google Scholar 

  • Hall H, Lundkvist C, Halldin C, Farde L, Pike VW, McCarron JA, Fletcher A, Cliffe IA, Barf T, Wikström H, Sedvall G (1997) Autoradiographic localization of 5-HT1A receptors in the post-mortem human brain using [3H]WAY-100635 and [11C]WAY-100635. Brain Res 745:96–108

    Article  CAS  PubMed  Google Scholar 

  • Hall H, Halldin C, Farde L, Sedvall G (1998) Whole hemisphere autoradiography of the postmortem human brain. Nucl Med Biol 25:715–719

    Article  CAS  PubMed  Google Scholar 

  • Heinsen H, Rub U, Bauer M, Ulmar G, Bethke B, Schüler M, Böcker F, Eisenmenger W, Götz M, Korr H, Schmitz C (1999) Nerve cell loss in the thalamic mediodorsal nucleus in Huntington’s disease. Acta Neuropathol 97:613–622

    Article  CAS  PubMed  Google Scholar 

  • Hintermann S, Vranesic I, Allgeier H, Brülisauer A, Hoyer D, Lemaire M, Moenius T, Urwyler S, Whitebread S, Gasparini F, Auberson YP (2007) ABP688, a novel selective and high affinity ligand for the labeling of mGlu5 receptors: identification, in vitro pharmacology, pharmacokinetic and biodistribution studies. Bioorg Med Chem 15:903–914

    Article  CAS  PubMed  Google Scholar 

  • Macdonald V, Halliday G (2002) Pyramidal cell loss in motor cortices in Huntington’s disease. Neurobiol Dis 10:378–386

    Article  PubMed  Google Scholar 

  • Marshall PE, Landis DM, Zalneraitis EL (1983) Immunocytochemical studies of substance P and leucine-enkephalin in Huntington’s disease. Brain Res 289:11–26

    Article  CAS  PubMed  Google Scholar 

  • Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116:201–211

    CAS  PubMed  Google Scholar 

  • Myers RH, Vonsattel JP, Paskevich PA, Kiely DK, Stevens TJ, Cupples LA, Richardson EP Jr, Bird ED (1991) Decreased neuronal and increased oligodendroglial densities in Huntington’s disease caudate nucleus. J Neuropathol Exp Neurol 50:729–742

    Article  CAS  PubMed  Google Scholar 

  • Ouattara B, Gasparini F, Morissette M, Grégoire L, Samadi P, Gomez-Mancilla B, Di Paolo T (2010) Effect of L-Dopa on metabotropic glutamate receptor 5 in the brain of parkinsonian monkeys. J Neurochem 113:715–724

    Article  CAS  PubMed  Google Scholar 

  • Ouattara B, Gregoire L, Morissette M, Gasparini F, Vranesic I, Bilbe G, Johns DR, Rajput A, Hornykiewicz O, Rajput AH, Gomez-Mancilla B, Di Paolo T (2011) Metabotropic glutamate receptor type 5 in levodopa-induced motor complications. Neurobiol Aging 32:1286–1295

    Article  CAS  PubMed  Google Scholar 

  • Popoli P, Pezzola A, Torvinen M, Reggio R, Pintor A, Scarchilli L, Fuxe K, Ferré S (2001) The selective mGlu(5) receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D(2) receptors in the rat striatum: interactions with adenosine A(2a) receptors. Neuropsychopharmacology 25:505–513

    Article  CAS  PubMed  Google Scholar 

  • Price DL, Rockenstein E, Ubhi K, Phung V, MacLean-Lewis N, Askay D, Cartier A, Spencer B, Patrick C, Desplats P, Ellisman MH, Masliah E (2010) Alterations in mGluR5 expression and signaling in Lewy body disease and in transgenic models of alpha-synucleinopathy—implications for excitotoxicity. PLoS One 5(11):e14020

    Article  PubMed Central  PubMed  Google Scholar 

  • Reiner A, Albin RL, Anderson KD, D’Amato CJ, Penney JB, Young AB (1988) Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci USA 85:5733–5737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reiner A, Shelby E, Wang H, Demarch Z, Deng Y, Guley NH, Hogg V, Roxburgh R, Tippett LJ, Waldvogel HJ, Faull RL (2013) Striatal parvalbuminergic neurons are lost in Huntington’s disease: implications for dystonia. Mov Disord 28:1691–1699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ribeiro FM, Paquet M, Ferreira LT, Cregan T, Swan P, Cregan SP, Ferguson SS (2010) Metabotropic glutamate receptor-mediated cell signaling pathways are altered in a mouse model of Huntington’s disease. J Neurosci 30:316–324

    Article  CAS  PubMed  Google Scholar 

  • Sapp E, Ge P, Aizawa H, Bird E, Penney J, Young AB, Vonsattel JP, DiFiglia M (1995) Evidence for a preferential loss of enkephalin immunoreactivity in the external globus pallidus in low grade Huntington’s disease using high resolution image analysis. Neuroscience 64:397–404

    Article  CAS  PubMed  Google Scholar 

  • Schiefer J, Sprünken A, Puls C, Lüesse HG, Milkereit A, Milkereit E, Johann V, Kosinski CM (2004) The metabotropic glutamate receptor 5 antagonist MPEP and the mGluR2 agonist LY379268 modify disease progression in a transgenic mouse model of Huntington’s disease. Brain Res 1019:246–254

    Article  CAS  PubMed  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1990) Topographic intermingling of striatonigral and striatopallidal neurons in the rhesus monkey. J Comp Neurol 297:359–376

    Article  CAS  PubMed  Google Scholar 

  • Senior W (1969) Staining of animal tissues with the dye base of methylene green in benzene to facilitate identification and selection of material. Stain Technol 44:269–271

    CAS  PubMed  Google Scholar 

  • Spargo E, Everall IP, Lantos PL (1993) Neuronal loss in the hippocampus in Huntington’s disease: a comparison with HIV infection. J Neurol Neurosurg Psychiatry 56:487–491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57:369–384

    Article  CAS  PubMed  Google Scholar 

  • Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    Article  CAS  PubMed  Google Scholar 

  • Walker FO (2007) Huntington’s disease. Lancet 369:218–228

    Article  CAS  PubMed  Google Scholar 

  • Waters CM, Peck R, Rossor M, Reynolds GP, Hunt SP (1988) Immunocytochemical studies on the basal ganglia and substantia nigra in Parkinson’s disease and Huntington’s chorea. Neuroscience 25:419–438

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the assistance of the Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, for obtaining human brain tissue, and sincerely thank Siv Eriksson and Viktoria Varga for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balázs Gulyás.

Additional information

B. Gulyás and J. Sovago contributed equally to this work.

F. Gasparini and C. Halldin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulyás, B., Sovago, J., Gomez-Mancilla, B. et al. Decrease of mGluR5 receptor density goes parallel with changes in enkephalin and substance P immunoreactivity in Huntington’s disease: a preliminary investigation in the postmortem human brain . Brain Struct Funct 220, 3043–3051 (2015). https://doi.org/10.1007/s00429-014-0812-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0812-y

Keywords

Navigation