Skip to main content
Log in

Functional genomics suggest neurogenesis in the adult human olfactory bulb

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The human olfactory bulb displays high morphologic dynamics changing its volume with olfactory function, which has been explained by active neurogenetic processes. Discussion continues whether the human olfactory bulb hosts a continuous turnover of neurons. We analyzed the transcriptome via RNA quantification of adult human olfactory bulbs and intersected the set of expressed transcriptomic genes with independently available proteomic expression data. To obtain a functional genomic perspective, this intersection was analyzed for higher-level organization of gene products into biological pathways established in the gene ontology database. We report that a fifth of genes expressed in adult human olfactory bulbs serve functions of nervous system or neuron development, half of them functionally converging to axonogenesis but no other non-neurogenetic biological processes. Other genes were expectedly involved in signal transmission and response to chemical stimuli. This provides a novel, functional genomics perspective supporting the existence of neurogenesis in the adult human olfactory bulb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ache BW, Young JM (2005) Olfaction: diverse species, conserved principles. Neuron 48(3):417–430. doi:10.1016/j.neuron.2005.10.022

    Article  CAS  PubMed  Google Scholar 

  • Albers MW, Tabert MH, Devanand DP (2006) Olfactory dysfunction as a predictor of neurodegenerative disease. Curr Neurol Neurosci Rep 6(5):379–386

    Article  PubMed  Google Scholar 

  • Alm E, Arkin AP (2003) Biological networks. Curr Opin Struct Biol 13(2):193–202

    Article  CAS  PubMed  Google Scholar 

  • Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137(4):433–457. doi:10.1002/cne.901370404

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29. doi:10.1038/75556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Backes C, Keller A, Kuentzer J, Kneissl B, Comtesse N, Elnakady YA, Muller R, Meese E, Lenhof HP (2007) GeneTrail—advanced gene set enrichment analysis. Nucleic Acids Res 35 (Web Server issue):W186–W192. doi:10.1093/nar/gkm323

  • Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113. doi:10.1038/nrg1272

    Article  CAS  PubMed  Google Scholar 

  • Bedard A, Parent A (2004) Evidence of newly generated neurons in the human olfactory bulb. Brain Res Dev Brain Res 151:159–168

    Article  CAS  PubMed  Google Scholar 

  • Bergmann O, Liebl J, Bernard S, Alkass K, Yeung MS, Steier P, Kutschera W, Johnson L, Landen M, Druid H, Spalding KL, Frisen J (2012) The age of olfactory bulb neurons in humans. Neuron 74(4):634–639. doi:10.1016/j.neuron.2012.03.030

    Article  CAS  PubMed  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–193

    Article  CAS  PubMed  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1):175–187

    Article  CAS  PubMed  Google Scholar 

  • Camon E, Magrane M, Barrell D, Lee V, Dimmer E, Maslen J, Binns D, Harte N, Lopez R, Apweiler R (2004) The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Res 32 (Database issue):D262–D266. doi:10.1093/nar/gkh021

  • Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S, Ami GOH, Web Presence Working G (2009) AmiGO: online access to ontology and annotation data. Bioinformatics 25 (2):288–289. doi:10.1093/bioinformatics/btn615

    Google Scholar 

  • Carleton A, Petreanu LT, Lansford R, Alvarez-Buylla A, Lledo PM (2003) Becoming a new neuron in the adult olfactory bulb. Nat Neurosci 6(5):507–518. doi:10.1038/nn1048

    CAS  PubMed  Google Scholar 

  • Cummings DM, Henning HE, Brunjes PC (1997) Olfactory bulb recovery after early sensory deprivation. J Neurosci 17(19):7433–7440

    CAS  PubMed  Google Scholar 

  • Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtas S, van Roon-Mom WM, Bjork-Eriksson T, Nordborg C, Frisen J, Dragunow M, Faull RL, Eriksson PS (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315(5816):1243–1249. doi:10.1126/science.1136281

    Article  CAS  PubMed  Google Scholar 

  • da Huang W, Sherman BT, Stephens R, Baseler MW, Lane HC, Lempicki RA (2008) DAVID gene ID conversion tool. Bioinformation 2(10):428–430

    Article  PubMed Central  Google Scholar 

  • Dijkmans TF, van Hooijdonk LW, Fitzsimons CP, Vreugdenhil E (2010) The doublecortin gene family and disorders of neuronal structure. Cent Nerv Syst Agents Med Chem 10(1):32–46

    Article  CAS  PubMed  Google Scholar 

  • Doty RL, Cameron EL (2009) Sex differences and reproductive hormone influences on human odor perception. Physiol Behav 97(2):213–228. doi:10.1016/j.physbeh.2009.02.032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doty RL, Shaman P, Applebaum SL, Giberson R, Sikorski L, Rosenberg L (1984) Smell identification ability: changes with age. Science 226:1441–1443

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Irigoyen J, Corrales FJ, Santamaria E (2012) Proteomic atlas of the human olfactory bulb. J Proteomics 75(13):4005–4016. doi:10.1016/j.jprot.2012.05.011

    Article  CAS  PubMed  Google Scholar 

  • Gottfried JA (2006) Smell: central nervous processing. Adv Otorhinolaryngol 63:44–69. doi:10.1159/000093750

    PubMed  Google Scholar 

  • Graziadei PP, DeHan RS (1973) Neuronal regeneration in frog olfactory system. J Cell Biol 59(2 Pt 1):525–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graziadei PP, Metcalf JF (1971) Autoradiographic and ultrastructural observations on the frog’s olfactory mucosa. Zeitschrift fur Zellforschung und mikroskopische Anatomie 116(3):305–318

    Article  CAS  PubMed  Google Scholar 

  • Gudziol V, Buschhuter D, Abolmaali N, Gerber J, Rombaux P, Hummel T (2009) Increasing olfactory bulb volume due to treatment of chronic rhinosinusitis—a longitudinal study. Brain 132(Pt 11):3096–3101. doi:10.1093/brain/awp243

    Article  CAS  PubMed  Google Scholar 

  • Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, van de Lagemaat LN, Smith KA, Ebbert A, Riley ZL, Abajian C, Beckmann CF, Bernard A, Bertagnolli D, Boe AF, Cartagena PM, Chakravarty MM, Chapin M, Chong J, Dalley RA, Daly BD, Dang C, Datta S, Dee N, Dolbeare TA, Faber V, Feng D, Fowler DR, Goldy J, Gregor BW, Haradon Z, Haynor DR, Hohmann JG, Horvath S, Howard RE, Jeromin A, Jochim JM, Kinnunen M, Lau C, Lazarz ET, Lee C, Lemon TA, Li L, Li Y, Morris JA, Overly CC, Parker PD, Parry SE, Reding M, Royall JJ, Schulkin J, Sequeira PA, Slaughterbeck CR, Smith SC, Sodt AJ, Sunkin SM, Swanson BE, Vawter MP, Williams D, Wohnoutka P, Zielke HR, Geschwind DH, Hof PR, Smith SM, Koch C, Grant SG, Jones AR (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489(7416):391–399. doi:10.1038/nature11405

    Article  CAS  PubMed  Google Scholar 

  • Holley A, Duchamp A, Revial MF, Juge A, Mac Leod P (1974) Qualitative and quantitative discrimination in the frog olfactory receptors: analysis from electrophysiological data. Ann NY Acad Sci 237:102–114

    Google Scholar 

  • Hu P, Bader G, Wigle DA, Emili A (2007) Computational prediction of cancer-gene function. Nat Rev Cancer 7(1):23–34. doi:10.1038/nrc2036

    Article  CAS  PubMed  Google Scholar 

  • Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11(10):1153–1161. doi:10.1038/nn.2185

    Article  CAS  PubMed  Google Scholar 

  • Izenmann AJ (2008) Modern multivariate statistical techniques. Springer, Philadelphia

  • Jaglin XH, Chelly J (2009) Tubulin-related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects. Trends Genet 25(12):555–566. doi:10.1016/j.tig.2009.10.003

    Article  CAS  PubMed  Google Scholar 

  • Jiao X, Sherman BT, da Huang W, Stephens R, Baseler MW, Lane HC, Lempicki RA (2012) DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 28(13):1805–1806. doi:10.1093/bioinformatics/bts251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keller A, Zhuang H, Chi Q, Vosshall LB, Matsunami H (2007) Genetic variation in a human odorant receptor alters odour perception. Nature 449(7161):468–472. doi:10.1038/nature06162

    Article  CAS  PubMed  Google Scholar 

  • Keller A, Backes C, Al-Awadhi M, Gerasch A, Kuntzer J, Kohlbacher O, Kaufmann M, Lenhof HP (2008) GeneTrailExpress: a web-based pipeline for the statistical evaluation of microarray experiments. BMC Bioinforma 9:552. doi:10.1186/1471-2105-9-552

    Article  Google Scholar 

  • Kornack DR, Rakic P (2001) The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci USA 98(8):4752–4757. doi:10.1073/pnas.081074998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin DM, Yang YH, Scolnick JA, Brunet LJ, Marsh H, Peng V, Okazaki Y, Hayashizaki Y, Speed TP, Ngai J (2004) Spatial patterns of gene expression in the olfactory bulb. Proc Natl Acad Sci USA 101(34):12718–12723. doi:10.1073/pnas.0404872101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lötsch J, Geisslinger G, Hummel T (2012) Sniffing out pharmacology: interactions of drugs with human olfaction. Trends Pharmacol Sci 33(4):193–199. doi:10.1016/j.tips.2012.01.004

    Article  PubMed  Google Scholar 

  • Lötsch J, Doehring A, Mogil JS, Arndt T, Geisslinger G, Ultsch A (2013) Functional genomics of pain in analgesic drug development and therapy. Pharmacol Ther. doi:10.1016/j.pharmthera.2013.04.004

    PubMed  Google Scholar 

  • Lutterotti A, Vedovello M, Reindl M, Ehling R, Dipauli F, Kuenz B, Gneiss C, Deisenhammer F, Berger T (2011) Olfactory threshold is impaired in early, active multiple sclerosis. Mult Scler. doi:10.1177/1352458511399798

    Google Scholar 

  • Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96(5):713–723

    Article  CAS  PubMed  Google Scholar 

  • Maresh A, Rodriguez Gil D, Whitman MC, Greer CA (2008) Principles of glomerular organization in the human olfactory bulb—implications for odor processing. PLoS One 3 (7):e2640. doi:10.1371/journal.pone.0002640

  • Meisami E (1976) Effects of olfactory deprivation on postnatal growth of the rat olfactory bulb utilizing a new method for production of neonatal unilateral anosmia. Brain Res 107(2):437–444

    Article  CAS  PubMed  Google Scholar 

  • Menashe I, Lancet D (2006) Variations in the human olfactory receptor pathway. Cel Mol Life Sci (CMLS) 63(13):1485–1493. doi:10.1007/s00018-006-6111-x

    Article  CAS  Google Scholar 

  • Mueller A, Abolmaali ND, Hakimi AR, Gloeckler T, Herting B, Reichmann H, Hummel T (2005) Olfactory bulb volumes in patients with idiopathic Parkinson’s disease a pilot study. J Neural Transm 112(10):1363–1370. doi:10.1007/s00702-005-0280-x

    Article  CAS  PubMed  Google Scholar 

  • Nef P, Heldman J, Lazard D, Margalit T, Jaye M, Hanukoglu I, Lancet D (1989) Olfactory-specific cytochrome P-450. cDNA cloning of a novel neuroepithelial enzyme possibly involved in chemoreception. J Biol Chem 264(12):6780–6785

    CAS  PubMed  Google Scholar 

  • Pagano SF, Impagnatiello F, Girelli M, Cova L, Grioni E, Onofri M, Cavallaro M, Etteri S, Vitello F, Giombini S, Solero CL, Parati EA (2000) Isolation and characterization of neural stem cells from the adult human olfactory bulb. Stem Cells 18(4):295–300. doi:10.1634/stemcells.18-4-295

    Article  CAS  PubMed  Google Scholar 

  • Peters JM, Hummel T, Kratzsch T, Lötsch J, Skarke C, Frolich L (2003) Olfactory function in mild cognitive impairment and Alzheimer’s disease: an investigation using psychophysical and electrophysiological techniques. Am J Psychiatry 160(11):1995–2002

    Article  PubMed  Google Scholar 

  • Quinn NP, Rossor MN, Marsden CD (1987) Olfactory threshold in Parkinson’s disease. J Neurol Neurosurg Psychiatry 50:88–89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rombaux P, Duprez T, Hummel T (2009) Olfactory bulb volume in the clinical assessment of olfactory dysfunction. Rhinology 47(1):3–9

    CAS  PubMed  Google Scholar 

  • Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH, Wong M, Gupta N, Berger MS, Huang E, Garcia-Verdugo JM, Rowitch DH, Alvarez-Buylla A (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478(7369):382–386. doi:10.1038/nature10487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schaeffeler E, Hellerbrand C, Nies AT, Winter S, Kruck S, Hofmann U, van der Kuip H, Zanger UM, Koepsell H, Schwab M (2011) DNA methylation is associated with downregulation of the organic cation transporter OCT1 (SLC22A1) in human hepatocellular carcinoma. Genome Med 3(12):82. doi:10.1186/gm298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwartz BS, Doty RL, Monroe C, Frye R, Barker S (1989) Olfactory function in chemical workers exposed to acrylate and methacrylate vapors. Am J Public Health 79:613–618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Serby M, Corwin J, Conrad P, Rotrosen J (1985) Olfactory dysfunction in Alzheimer’s disease and Parkinson’s disease (letter). Am J Psychiatry 142(6):781–782

    CAS  PubMed  Google Scholar 

  • Wang C, Liu F, Liu YY, Zhao CH, You Y, Wang L, Zhang J, Wei B, Ma T, Zhang Q, Zhang Y, Chen R, Song H, Yang Z (2011) Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res 21(11):1534–1550. doi:10.1038/cr.2011.83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yousem DM, Geckle RJ, Bilker WB, Kroger H, Doty RL (1999) Posttraumatic smell loss: relationship of psychophysical tests and volumes of the olfactory bulbs and tracts and the temporal lobes. Acad Radiol 6(5):264–272

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

“Landesoffensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz”: “LOEWE-Schwerpunkt: Anwendungsorientierte Arzneimittelforschung” (JL), Deutsche Forschungsgemeinschaft (DFG HU-440/10-1 to TH) and Roland Ernst Stiftung (TH). ES, SW and MS are supported by the Robert Bosch Foundation, Stuttgart, Germany. The authors have declared that no competing interests exist. We thank Wolf von Waldow for his artistic help with Figs. 2 and 3. We particularly thank Dr. Joaquín Fernández-Irigoyen, Pamplona, Spain, for having provided detailed information about the proteomic gene expression from his recent publication, Fernandez-Irigoyen et al. (2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Lötsch.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lötsch, J., Schaeffeler, E., Mittelbronn, M. et al. Functional genomics suggest neurogenesis in the adult human olfactory bulb. Brain Struct Funct 219, 1991–2000 (2014). https://doi.org/10.1007/s00429-013-0618-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0618-3

Keywords

Navigation