Skip to main content
Log in

The zebrafish mutation m865 affects formation of dopaminergic neurons and neuronal survival, and maps to a genetic interval containing the sepiapterin reductase locus

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The zebrafish mutation m865 was isolated during a large-scale mutagenesis screen aimed at identifying genes involved in the development and maintenance of subgroups of neurons in the zebrafish central nervous system. The phenotype of m865 mutant embryos shows defects in the development of dopaminergic neurons in the pretectum and of retinal amacrine cells, as well as abnormal caudal dopaminergic cluster in the diencephalon. The effects of the mutation appear not to be restricted to dopaminergic neurons, as development of other neurotransmitter systems (serotonergic and cholinergic) is impaired as well. Furthermore, increased apoptosis is localized to the m865 mutant retina and in the optic tectum starting at 24hpf, and may lead to the observed reduced size of the mutant head and eye. Early patterning is not affected in m865 mutant embryos, and expression of genes known to play a role in dopaminergic cell differentiation is normal except for reduced expression of nurr1 in the mutant retina. Thus the m865 mutation does not specifically affect dopaminergic neuron development. m865 was genetically mapped to linkage group 5, and the critical genomic interval could be narrowed down to a region of 110 kb, containing four candidate genes. For one of these candidate genes, sepiapterin reductase (spr), a requirement for neuronal survival has previously been implicated, including dopaminergic neurons. Identification of the mutated gene should lead to a more detailed understanding of the defects observed in m865 mutant embryos, and potentially could enhance the understanding of the development and maintenance of specific dopaminergic neuronal populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

dpf:

Days post fertilization

hpf:

Hours post fertilization

References

  • Abdelilah S, Mountcastle-Shah E, Harvey M, Solnica-Krezel L, Schier AF, Stemple DL, Malicki J, Neuhauss SC, Zwartkruis F, Stainier DY, Rangini Z, Driever W (1996) Mutations affecting neural survival in the zebrafish Danio rerio. Development 123:217–227

    PubMed  CAS  Google Scholar 

  • Abrams JM, White K, Fessler LI, Steller H (1993) Programmed cell death during Drosophila embryogenesis. Development 117:29–43

    PubMed  CAS  Google Scholar 

  • Adams KA, Maida JM, Golden JA, Riddle RD (2000) The transcription factor Lmx1b maintains Wnt1 expression within the isthmic organizer. Development 127:1857–1867

    PubMed  CAS  Google Scholar 

  • Akimenko MA, Ekker M, Wegner J, Lin W, Westerfield M (1994) Combinatorial expression of three zebrafish genes related to distal-less: part of a homeobox gene code for the head. J Neurosci 14:3475–3486

    PubMed  CAS  Google Scholar 

  • Amemiya CT, Zon LI (1999) Generation of a zebrafish P1 artificial chromosome library. Genomics 58:211–213

    Article  PubMed  CAS  Google Scholar 

  • Andrulis ED, Werner J, Nazarian A, Erdjument-Bromage H, Tempst P, Lis JT (2002) The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila. Nature 420:837–841

    Article  PubMed  CAS  Google Scholar 

  • Biehlmaier O, Neuhauss SC, Kohler K (2001) Onset and time course of apoptosis in the developing zebrafish retina. Cell Tissue Res 306:199–207

    Article  PubMed  CAS  Google Scholar 

  • Blau N, Bonafe L, Thony B (2001) Tetrahydrobiopterin deficiencies without hyperphenylalaninemia: diagnosis and genetics of dopa-responsive dystonia and sepiapterin reductase deficiency. Mol Genet Metab 74:172–185

    Article  PubMed  CAS  Google Scholar 

  • Bonafe L, Thony B, Penzien JM, Czarnecki B, Blau N (2001) Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine-neurotransmitter deficiency without hyperphenylalaninemia. Am J Hum Genet 69:269–277

    Article  PubMed  CAS  Google Scholar 

  • Cole LK, Ross LS (2001) Apoptosis in the developing zebrafish embryo. Dev Biol 240:123–142

    Article  PubMed  CAS  Google Scholar 

  • Devine CA, Key B (2003) Identifying axon guidance defects in the embryonic zebrafish brain. Methods Cell Sci 25:33–37

    Article  PubMed  CAS  Google Scholar 

  • Driever W, Stemple D, Schier A, Solnica-Krezel L (1994) Zebrafish: genetic tools for studying vertebrate development. Trends Genet 10:152–159

    Article  PubMed  CAS  Google Scholar 

  • Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46

    PubMed  CAS  Google Scholar 

  • Dutta S, Dietrich JE, Aspock G, Burdine RD, Schier A, Westerfield M, Varga ZM (2005) pitx3 defines an equivalence domain for lens and anterior pituitary placode. Development 132:1579–1590

    Article  PubMed  CAS  Google Scholar 

  • Escriva H, Safi R, Hanni C, Langlois MC, Saumitou-Laprade P, Stehelin D, Capron A, Pierce R, Laudet V (1997) Ligand binding was acquired during evolution of nuclear receptors. Proc Natl Acad Sci USA 94:6803–6808

    Article  PubMed  CAS  Google Scholar 

  • Fashena D, Westerfield M (1999) Secondary motoneuron axons localize DM-GRASP on their fasciculated segments. J Comp Neurol 406:415–424

    Article  PubMed  CAS  Google Scholar 

  • Furutani-Seiki M, Jiang YJ, Brand M, Heisenberg CP, Houart C, Beuchle D, van Eeden FJ, Granato M, Haffter P, Hammerschmidt M, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Nusslein-Volhard C (1996) Neural degeneration mutants in the zebrafish, Danio rerio. Development 123:229–239

    PubMed  CAS  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb PD, Pierce SA, Sims RJ, Yamagishi H, Weihe EK, Harriss JV, Maika SD, Kuziel WA, King HL, Olson EN, Nakagawa O, Srivastava D (2002) Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet 31:25–32

    PubMed  CAS  Google Scholar 

  • Guo S, Wilson SW, Cooke S, Chitnis AB, Driever W, Rosenthal A (1999a) Mutations in the zebrafish unmask shared regulatory pathways controlling the development of catecholaminergic neurons. Dev Biol 208:473–487

    Article  PubMed  CAS  Google Scholar 

  • Guo S, Brush J, Teraoka H, Goddard A, Wilson SW, Mullins MC, Rosenthal A (1999b) Development of noradrenergic neurons in the zebrafish hindbrain requires BMP, FGF8, and the homeodomain protein soulless/Phox2a. Neuron 24:555–566

    Article  PubMed  CAS  Google Scholar 

  • Guo S, Yamaguchi Y, Schilbach S, Wada T, Lee J, Goddard A, French D, Handa H, Rosenthal A (2000) A regulator of transcriptional elongation controls vertebrate neuronal development. Nature 408:366–369

    Article  PubMed  CAS  Google Scholar 

  • Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nusslein-Volhard C (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    PubMed  CAS  Google Scholar 

  • Hauptmann G (1999) Two-color detection of mRNA transcript localizations in fish and fly embryos using alkaline phosphatase and β-galactosidase conjugated antibodies. Dev Genes Evol 209:317–321

    Article  PubMed  CAS  Google Scholar 

  • Holzschuh J, Hauptmann G, Driever W (2003a) Genetic analysis of the roles of Hh, FGF8, and nodal signaling during catecholaminergic system development in the zebrafish brain. J Neurosci 23:5507–5519

    CAS  Google Scholar 

  • Holzschuh J, Ryu S, Aberger F, Driever W (2001) Dopamine transporter expression distinguishes dopaminergic neurons from other catecholaminergic neurons in the developing zebrafish embryo. Mech Dev 101:237–243

    Article  PubMed  CAS  Google Scholar 

  • Holzschuh J, Barrallo-Gimeno A, Ettl AK, Durr K, Knapik EW, Driever W (2003b) Noradrenergic neurons in the zebrafish hindbrain are induced by retinoic acid and require tfap2a for expression of the neurotransmitter phenotype. Development 130:5741–5754

    Article  CAS  Google Scholar 

  • Ikemoto K, Suzuki T, Ichinose H, Ohye T, Nishimura A, Nishi K, Nagatsu I, Nagatsu T (2002) Localization of sepiapterin reductase in the human brain. Brain Res 954:237–246

    Article  PubMed  CAS  Google Scholar 

  • Kapsimali M, Bourrat F, Vernier P (2001) Distribution of the orphan nuclear receptor Nurr1 in medaka (Oryzias latipes): cues to the definition of homologous cell groups in the vertebrate brain. J Comp Neurol 431:276–292

    Article  PubMed  CAS  Google Scholar 

  • Karamohamed S, DeStefano AL, Wilk JB, Shoemaker CM, Golbe LI, Mark MH, Lazzarini AM, Suchowersky O, Labelle N, Guttman M, Currie LJ, Wooten GF, Stacy M, Saint-Hilaire M, Feldman RG, Sullivan KM, Xu G, Watts R, Growdon J, Lew M, Waters C, Vieregge P, Pramstaller PP, Klein C, Racette BA, Perlmutter JS, Parsian A, Singer C, Montgomery E, Baker K, Gusella JF, Fink SJ, Myers RH, Herbert A (2003) A haplotype at the PARK3 locus influences onset age for Parkinson’s disease: the GenePD study. Neurology 61:1557–1561

    PubMed  CAS  Google Scholar 

  • Karnovsky MJ, Roots L (1964) A “Direct-Coloring” thiocholine method for cholinesterases. J Histochem Cytochem 12:219–221

    PubMed  CAS  Google Scholar 

  • Kaslin J, Panula P (2001) Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). J Comp Neurol 440:342–377

    Article  PubMed  CAS  Google Scholar 

  • Kim CH, Bae YK, Yamanaka Y, Yamashita S, Shimizu T, Fujii R, Park HC, Yeo SY, Huh TL, Hibi M, Hirano T (1997) Overexpression of neurogenin induces ectopic expression of HuC in zebrafish. Neurosci Lett 239:113–116

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    PubMed  CAS  Google Scholar 

  • Knapik EW, Goodman A, Ekker M, Chevrette M, Delgado J, Neuhauss S, Shimoda N, Driever W, Fishman MC, Jacob HJ (1998) A microsatellite genetic linkage map for zebrafish (Danio rerio). Nat Genet 18:338–343

    Article  PubMed  CAS  Google Scholar 

  • Kreutzig T (1997) Biochemie: Kurzlehrbuch zum Gegenstandskatalog 1. Gustav Fischer

  • McLean DL, Fetcho JR (2004) Ontogeny and innervation patterns of dopaminergic, noradrenergic, and serotonergic neurons in larval zebrafish. J Comp Neurol 480:38–56

    Article  PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Neuhauss SC, Biehlmaier O, Seeliger MW, Das T, Kohler K, Harris WA, Baier H (1999) Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J Neurosci 19:8603–8615

    PubMed  CAS  Google Scholar 

  • Nornes S, Clarkson M, Mikkola I, Pedersen M, Bardsley A, Martinez JP, Krauss S, Johansen T (1998) Zebrafish contains two pax6 genes involved in eye development. Mech Dev 77:185–196

    Article  PubMed  CAS  Google Scholar 

  • Nüsslein-Volhard C, Dahm R (2002) Zebrafish. Oxford University Press, Oxford

  • Pelletier I, Bally-Cuif L, Ziegler I (2001) Cloning and developmental expression of zebrafish GTP cyclohydrolase I. Mech Dev 109:99–103

    Article  PubMed  CAS  Google Scholar 

  • Rink E, Wullimann MF (2002) Development of the catecholaminergic system in the early zebrafish brain: an immunohistochemical study. Brain Res Dev Brain Res 137:89–100

    Article  PubMed  CAS  Google Scholar 

  • Solnica-Krezel L, Driever W (1994) Microtubule arrays of the zebrafish yolk cell: organization and function during epiboly. Development 120:2443–2455

    PubMed  CAS  Google Scholar 

  • Steinberger D, Blau N, Goriuonov D, Bitsch J, Zuker M, Hummel S, Muller U (2004) Heterozygous mutation in 5′-untranslated region of sepiapterin reductase gene (SPR) in a patient with dopa-responsive dystonia. Neurogenetics 5:187–190

    Article  PubMed  CAS  Google Scholar 

  • Strachan T, Read AP (1994) PAX genes. Curr Opin Genet Dev 4:427–438

    Article  PubMed  CAS  Google Scholar 

  • Thony B, Auerbach G, Blau N (2000) Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J 347(Pt 1):1–16

    Article  PubMed  CAS  Google Scholar 

  • Trevarrow B, Marks DL, Kimmel CB (1990) Organization of hindbrain segments in the zebrafish embryo. Neuron 4:669–679

    Article  PubMed  CAS  Google Scholar 

  • Trowe T, Klostermann S, Baier H, Granato M, Crawford AD, Grunewald B, Hoffmann H, Karlstrom RO, Meyer SU, Muller B, Richter S, Nusslein-Volhard C, Bonhoeffer F (1996) Mutations disrupting the ordering and topographic mapping of axons in the retinotectal projection of the zebrafish, Danio rerio. Development 123:439–450

    PubMed  CAS  Google Scholar 

  • Vitalis T, Cases O, Parnavelas JG (2005) Development of the dopaminergic neurons in the rodent brainstem. Exp Neurol 191 (Suppl 1):S104–S112

    Article  PubMed  CAS  Google Scholar 

  • Westerfield M (1994) The zebrafish book. University of Oregon Press, Eugene

    Google Scholar 

  • Wullimann MF, Rink E (2002) The teleostean forebrain: a comparative and developmental view based on early proliferation, Pax6 activity and catecholaminergic organization. Brain Res Bull 57:363–370

    Article  PubMed  CAS  Google Scholar 

  • Ziegler I, McDonald T, Hesslinger C, Pelletier I, Boyle P (2000) Development of the pteridine pathway in the zebrafish, Danio rerio. J Biol Chem 275:18926–18932

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Johannes Bischof, Dr. Katrin Dürr, Dr. Soojin Ryu and Björn Wendik for advice during mutant analysis and cloning; Dr. Jörg Rauch, Dr. Robert Geisler, Silke Geiger-Rudoph (Max-Planck-Insitut für Entwicklungsbiologie, Tübingen) and Dr. Heinz-Georg Belting for advice on genetic mapping; Dr. Hans-Georg Fronhöfer (Max-Planck-Insitut für Entwicklungsbiologie, Tübingen) for providing tm88z fish. We thank Franziska Seifert and Sabine Götter for technical assistance and fish care; Dr. Max Muenke for discussion. This work was supported through DFG-SFB 505 B7 (WD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Driever.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ettl, AK., Holzschuh, J. & Driever, W. The zebrafish mutation m865 affects formation of dopaminergic neurons and neuronal survival, and maps to a genetic interval containing the sepiapterin reductase locus. Brain Struct Funct 211 (Suppl 1), 73–86 (2006). https://doi.org/10.1007/s00429-006-0128-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-006-0128-7

Keywords

Navigation