Skip to main content
Log in

MicroRNA expression profiles of seminoma from paraffin-embedded formalin-fixed tissue

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

In this study, we used microRNA (miRNA) microarrays in an unbiased screen for aberrantly expressed miRNAs in seminoma, a primitive type of germ cell tumor. Formalin-fixed and paraffin-embedded (FFPE) surgical samples from 11 cases of normal testicular tissue resected for nonneoplastic causes and from 11 cases of seminoma were assessed for miRNA expression. Normal testicular tissue and seminoma were paired by race. We found 112 miRNAs to be differentially expressed between seminoma and normal testicular tissue; 52 miRNAs were overexpressed, and 60, downregulated in seminoma. We did not observe significant differences between black and white populations in our race-paired study. The upregulation of the expression of hsa-mir-21, hsa-mir-372, hsa-mir-373, has-mir-221, and hsa-mir-222 was validated by reverse transcription and real-time PCR. Hsa-mir-372 was upregulated around 1,270-fold (95 % confidence interval (CI) 525.2–3,064.8; p = 8.1e-5 by Mann–Whitney U test). Hsa-mir-373 was upregulated around 1,530-fold (95 % CI 620.5–3,785.6; p = 8.0e-5 by Mann–Whitney U test), consistent with previous reports, indicating that the miRNAs in FFPE are well preserved, and FFPE can be a valuable source for the miRNA study of seminoma. In addition, expression of hsa-mir-21 (12.2-fold, 0.0095), hsa-mir-221 (3.8-fold, 0.014) and hsa-mir-222 (3.8-fold, 0.019) was found elevated in seminoma compared to normal testicular tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. McGlynn KA, Devesa SS, Sigurdson AJ et al (2003) Trends in the incidence of testicular germ cell tumors in the United States. Cancer 97(1):63–70

    Article  PubMed  Google Scholar 

  2. Iczkowski KA, Butler SL (2006) New immunohistochemical markers in testicular tumors. Anal Quant Cytol Histol 28(4):181–187

    PubMed  Google Scholar 

  3. Cowland JB, Hother C, Gronbaek K (2007) MicroRNAs and cancer. APMIS 115(10):1090–1106

    Article  PubMed  CAS  Google Scholar 

  4. Voorhoeve PM, le Sage C, Schrier M et al (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124(6):1169–1181

    Article  PubMed  CAS  Google Scholar 

  5. Lee EJ, Gusev Y, Jiang J et al (2007) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120(5):1046–1054

    Article  PubMed  CAS  Google Scholar 

  6. Palmer RD, Murray MJ, Saini HK et al (2010) Malignant germ cell tumors display common microRNA profiles resulting in global changes in expression of messenger RNA targets. Cancer Res 70(7):2911–2923

    Article  PubMed  CAS  Google Scholar 

  7. Skakkebaek NE (1972) Possible carcinoma-in-situ of the testis. Lancet 2(7776):516–517

    Article  PubMed  CAS  Google Scholar 

  8. Heidenreich A, Weissbach L, Holtl W et al (2001) Organ sparing surgery for malignant germ cell tumor of the testis. J Urol 166(6):2161–2165

    Article  PubMed  CAS  Google Scholar 

  9. Di Vizio D, Cito L, Boccia A et al (2005) Loss of the tumor suppressor gene PTEN marks the transition from intratubular germ cell neoplasias (ITGCN) to invasive germ cell tumors. Oncogene 24(11):1882–1894

    Article  PubMed  Google Scholar 

  10. Tang F, Hajkova P, Barton SC et al (2006) MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res 34(2):e9

    Article  PubMed  Google Scholar 

  11. Lehmann U (2010) MicroRNA-profiling in formalin-fixed paraffin-embedded specimens. Methods Mol Biol 667:113–125

    Article  PubMed  CAS  Google Scholar 

  12. Liu A, Xu X (2011) MicroRNA isolation from formalin-fixed, paraffin-embedded tissues. Methods Mol Biol 724:259–267

    Article  PubMed  CAS  Google Scholar 

  13. Luzna P, Gregar J, Uberall I et al (2011) Changes of microRNAs-192, 196a and 203 correlate with Barrett’s esophagus diagnosis and its progression compared to normal healthy individuals. Diagn Pathol 6(1):114

    Article  PubMed  CAS  Google Scholar 

  14. Niyazi M, Zehentmayr F, Niemoller OM et al (2011) MiRNA expression patterns predict survival in glioblastoma. Radiat Oncol 6:153

    Article  PubMed  CAS  Google Scholar 

  15. Snowdon J, Zhang X, Childs T et al (2011) The microRNA-200 family is upregulated in endometrial carcinoma. PLoS One 6(8):e22828

    Article  PubMed  CAS  Google Scholar 

  16. Tetzlaff MT, Liu A, Xu X et al (2007) Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues. Endocr Pathol 18(3):163–173

    Article  PubMed  CAS  Google Scholar 

  17. Gillis AJ, Stoop HJ, Hersmus R et al (2007) High-throughput microRNAome analysis in human germ cell tumours. J Pathol 213(3):319–328

    Article  PubMed  CAS  Google Scholar 

  18. Suh MR, Lee Y, Kim JY et al (2004) Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270(2):488–498

    Article  PubMed  CAS  Google Scholar 

  19. Judson RL, Babiarz JE, Venere M et al (2009) Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 27(5):459–461

    Article  PubMed  CAS  Google Scholar 

  20. Wang Y, Baskerville S, Shenoy A et al (2008) Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 40(12):1478–1483

    Article  PubMed  CAS  Google Scholar 

  21. Voorhoeve PM, le Sage C, Schrier M et al (2007) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Adv Exp Med Biol 604:17–46

    Article  PubMed  Google Scholar 

  22. Lowe SW, Ruley HE, Jacks T, Housman DE (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74(6):957–967

    Article  PubMed  CAS  Google Scholar 

  23. Lutzker SG (1998) P53 tumour suppressor gene and germ cell neoplasia. APMIS 106(1):85–89

    Article  PubMed  CAS  Google Scholar 

  24. Port M, Glaesener S, Ruf C et al (2011) Micro-RNA expression in cisplatin resistant germ cell tumor cell lines. Mol Cancer 10:52

    Article  PubMed  CAS  Google Scholar 

  25. Huang Q, Gumireddy K, Schrier M et al (2008) The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10(2):202–210

    Article  PubMed  CAS  Google Scholar 

  26. Rentoft M, Fahlen J, Coates PJ et al (2011) miRNA analysis of formalin-fixed squamous cell carcinomas of the tongue is affected by age of the samples. Int J Oncol 38(1):61–69

    PubMed  CAS  Google Scholar 

  27. Siebolts U, Varnholt H, Drebber U et al (2009) Tissues from routine pathology archives are suitable for microRNA analyses by quantitative PCR. J Clin Pathol 62(1):84–88

    Article  PubMed  CAS  Google Scholar 

  28. Li S, Liang Z, Xu L, Zou F (2012) MicroRNA-21: a ubiquitously expressed pro-survival factor in cancer and other diseases. Mol Cell Biochem 360(1–2):147–158

    Article  PubMed  CAS  Google Scholar 

  29. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029–6033

    Article  PubMed  CAS  Google Scholar 

  30. Frankel LB, Christoffersen NR, Jacobsen A et al (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283(2):1026–1033

    Article  PubMed  CAS  Google Scholar 

  31. Asangani IA, Rasheed SA, Nikolova DA et al (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27(15):2128–2136

    Article  PubMed  CAS  Google Scholar 

  32. Nagao Y, Hisaoka M, Matsuyama A et al (2012) Association of microRNA-21 expression with its targets, PDCD4 and TIMP3, in pancreatic ductal adenocarcinoma. Mod Pathol 25(1):112–121

    Article  PubMed  CAS  Google Scholar 

  33. Niu Z, Goodyear SM, Rao S et al (2011) MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 108(31):12740–12745

    Article  PubMed  CAS  Google Scholar 

  34. Elmen J, Lindow M, Silahtaroglu A et al (2008) Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 36(4):1153–1162

    Article  PubMed  CAS  Google Scholar 

  35. Krutzfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689

    Article  PubMed  Google Scholar 

  36. Felicetti F, Errico MC, Segnalini P, Mattia G, Care A (2008) MicroRNA-221 and −222 pathway controls melanoma progression. Expert Rev Anticancer Ther 8(11):1759–1765

    Article  PubMed  CAS  Google Scholar 

  37. le Sage C, Nagel R, Egan DA et al (2007) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26(15):3699–3708

    Article  PubMed  Google Scholar 

  38. Liang Y (2008) An expression meta-analysis of predicted microRNA targets identifies a diagnostic signature for lung cancer. BMC Med Genomics 1:61

    Article  PubMed  Google Scholar 

  39. Miller TE, Ghoshal K, Ramaswamy B et al (2008) MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem 283(44):29897–29903

    Article  PubMed  CAS  Google Scholar 

  40. Zhao JJ, Lin J, Yang H et al (2008) MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem 283(45):31079–31086

    Article  PubMed  CAS  Google Scholar 

  41. Garofalo M, Di Leva G, Romano G et al (2009) miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16(6):498–509

    Article  PubMed  CAS  Google Scholar 

  42. Zhang C, Kang C, Wang P et al (2011) MicroRNA-221 and −222 regulate radiation sensitivity by targeting the PTEN pathway. Int J Radiat Oncol Biol Phys 80(1):240–248

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Aihua Liu for the technical support.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Bing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bing, Z., Master, S.R., Tobias, J.W. et al. MicroRNA expression profiles of seminoma from paraffin-embedded formalin-fixed tissue. Virchows Arch 461, 663–668 (2012). https://doi.org/10.1007/s00428-012-1325-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-012-1325-9

Keywords

Navigation