Skip to main content
Log in

Evolution of Hox3 and ftz in arthropods: insights from the crustacean Daphnia pulex

  • Short Communication
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The Drosophila melanogaster genes zerknüllt (zen) and fushi tarazu (ftz) are members of the Hox gene family whose roles have changed significantly in the insect lineage and thus provide an opportunity to study the mechanisms underlying the functional evolution of Hox proteins. We have studied the expression of orthologs of zen (DpuHox3) and ftz (Dpuftz) in the crustacean Daphnia pulex (Branchiopoda), both of which show a dynamic expression pattern. DpuHox3 is expressed in a complex pattern in early embryogenesis, with the most anterior boundary of expression lying at the anterior limit of the second antennal segment as well as a ring of expression around the embryo. In later embryos, DpuHox3 expression is restricted to the mesoderm of mandibular limb buds. Dpuftz is first expressed in a ring around the embryo following the posterior limit of the mandibular segment. Later, Dpuftz is restricted to the posterior part of the mandibular segment. This is the first report of expression of a Hox3 ortholog in a crustacean, and together with Dpuftz data, the results presented here show that Hox3 and ftz have retained a Hox-like expression pattern in crustaceans. This is in accordance with the proposed model of Hox3 and ftz evolution in arthropods and allows a more precise pinpointing of the loss of ftz “Hox-like behaviour”: in the lineage between the Branchiopoda and the basal insect Thysanura.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Abzhanov A, Popadic A, Kaufman TC (1999) Chelicerate Hox genes and the homology of arthropod segments. Evolut Develop 1:77–89

    Article  CAS  Google Scholar 

  • Alonso CR, Maxton-Kuechenmeister J, Akam M (2001) Evolution of Ftz protein function in insects. Curr Biol 11:1473–1478

    Article  PubMed  CAS  Google Scholar 

  • Brown SJ, Hilgenfeld RB, Denell RE (1994) The beetle Tribolium castaneum has a fushi tarazu homolog expressed in stripes during segmentation. Proc Natl Acad Sci USA 91:12922–12926

    Article  PubMed  CAS  Google Scholar 

  • Choe CP, Miller SC, Brown SJ (2006) A pair-rule gene circuit defines segments sequentially in the short-germ insect Tribolium castaneum. Proc Natl Acad Sci USA 103:6560–6564

    Article  PubMed  CAS  Google Scholar 

  • Damen WG, Tautz D (1998) A Hox class 3 orthologue from the spider Cupiennius salei is expressed in a Hox-gene-like fashion. Dev Genes Evol 208:586–590

    Article  PubMed  CAS  Google Scholar 

  • Damen WG, Janssen R, Prpic NM (2005) Pair rule gene orthologs in spider segmentation. Evolut Develop 7:618–628

    Article  Google Scholar 

  • Dawes R, Dawson I, Falciani F, Tear G, Akam M (1994) Dax, a locust Hox gene related to fushi-tarazu but showing no pair-rule expression. Development 120:1561–1572

    PubMed  CAS  Google Scholar 

  • Doe CQ, Hiromi Y, Gehring WJ, Goodman CS (1998) Expression and function of the segmentation gene fushi tarazu during Drosophila neurogenesis. Science 239:170–175

    Article  Google Scholar 

  • Falciani F, Hausdorf B, Schroder R, Akam M, Tautz D, Denell R, Brown S (1996) Class 3 Hox genes in insects and the origin of zen. Proc Natl Acad Sci USA 93:8479–8484

    Article  PubMed  CAS  Google Scholar 

  • Glenner H, Thomsen PF, Hebsgaard MB, Sorensen MV, Willerslev E (2006) Evolution. The origin of insects. Science 314:1883–1884

    Article  PubMed  CAS  Google Scholar 

  • Hughes CL, Kaufman TC (2002a) Exploring the myriapod body plan:expression patterns of the ten Hox genes in a centipede. Development 129:1225–1238

    PubMed  CAS  Google Scholar 

  • Hughes CL, Kaufman TC (2002b) Hox genes and the evolution of the arthropod body plan. Evolut Develop 4:459–499

    Article  CAS  Google Scholar 

  • Hughes CL, Liu PZ, Kaufman TC (2004) Expression patterns of the rogue Hox genes Hox3/zen and fushi tarazu in the apterygote insect Thermobia domestica. Evolut Develop 6:393–401

    Article  CAS  Google Scholar 

  • Irvine SQ, Martindale MQ (2000) Expression patterns of anterior Hox genes in the polychaete Chaetopterus: correlation with morphological bounderies. Dev Biol 217:333–351

    Article  PubMed  CAS  Google Scholar 

  • Janssen R, Damen WG (2006) The ten Hox genes of the millipede Glomeris marginata. Dev Genes Evol 216:451–465

    Article  PubMed  CAS  Google Scholar 

  • Kaufman TC, Seeger MA, Olsen G (1990) Molecular and genetic organization of the antennapedia gene complex of Drosophila melanogaster. Adv Genet 27:309–336

    Article  PubMed  CAS  Google Scholar 

  • Kotov AA, Boikova OS (2001) Study of the late embryogenesis of Daphnia (Anomopoda, ‘Cladocera’, Branchiopoda) and a comparison of development in Anomopoda and Ctenopoda. Hydrobiologia 442:127–143

    Article  Google Scholar 

  • Kulakova M, Bakalenko N, Novikova E, Cook CE, Eliseeva E, Steinmets PR, Kostyuchenko RP, Dondua A, Arendt D, Akam M, Andreeva T (2007) Hox gene expresion in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa). Dev Genes Evol 217:39–54

    Article  PubMed  CAS  Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    Article  PubMed  CAS  Google Scholar 

  • Löhr U, Pick L (2005) Cofactor-interaction motifs and the cooption of a homeotic Hox protein into the segmentation pathway of Drosophila melanogaster. Curr Biol 15:643–649

    Article  PubMed  CAS  Google Scholar 

  • Löhr U, Yussa M, Pick L (2001) Drosophila fushi tarazu:a gene on the border of homeotic function. Curr Biol 11:1403–1412

    Article  PubMed  Google Scholar 

  • Mallatt J, Giribet G (2006) Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa:37 more arthropods and a kinorhynch. Mol Phylogenet Evol 40:772–799

    Article  PubMed  CAS  Google Scholar 

  • Mouchel-vielh E, Blin M, Rigolot C, Deutsch JS (2002) Expression of a homologue of the fushi tarazu (ftz) gene in a cirripede crustacean. Evolut Develop 4:76–85

    Article  CAS  Google Scholar 

  • Panfilio KA, Akam M (2007) A comparison of Hox3 and Zen protein coding sequences in taxa that span the Hox3/zen divergence. Dev Genes Evol 217 (in press) DOI 10.1007/s00427-007-0133-8

  • Panfilio KA, Liu PZ, Akam M, Kaufman TC (2006) Oncopeltus fasciatus zen is essential for serosal tissue function in katatrepsis. Dev Biol 292:226–243

    Article  PubMed  CAS  Google Scholar 

  • Shiga Y, Yasumoto R, Yamagata H, Hayashi S (2002) Evolving role of Antennapedia protein in arthropod limb patterning. Development 129:3555–3561

    PubMed  CAS  Google Scholar 

  • Stauber M, Prell A, Schmidt-Ott U (2002) A single Hox3 gene with composite bicoid and zerknullt expression characteristics in non-Cyclorrhaphan flies. Proc Natl Acad Sci USA. 99:274–279

    Article  PubMed  CAS  Google Scholar 

  • Stuart JJ, Brown SJ, Beeman RW, Denell RE (1991) A deficiency of the homeotic complex of the beetle Tribolium. Nature 350:72–74

    Article  PubMed  CAS  Google Scholar 

  • Telford MJ (2000) Evidence for the derivation of the Drosophila fushi tarazu gene from a Hox gene orthologous to lophotrochozoan. Lox5 Curr Biol 10:349–352

    Article  CAS  Google Scholar 

  • Telford MJ, Thomas RH (1998) Of mites and zen:expression studies in a chelicerate arthropod confirm zen is a divergent Hox gene. Dev Genes Evol 208:591–594

    Article  PubMed  CAS  Google Scholar 

  • Wakimoto BT, Turner FR, Kaufman TC (1984) Defects in embryogenesis in mutants associated with the antennapedia gene complex of Drosophila melanogaster. Dev Biol 102:147–172

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

D.P. thanks Y Shiga for sharing the WMISH protocol, Y. Perez and B. Barascud for the advice on the husbandry, K. Panfilio for sharing data and members of the lab for thoughtful discussions. D.P. is supported by the EU Marie Curie Research Training Network Zoonet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Papillon.

Additional information

Communicated by S. Roth

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papillon, D., Telford, M.J. Evolution of Hox3 and ftz in arthropods: insights from the crustacean Daphnia pulex . Dev Genes Evol 217, 315–322 (2007). https://doi.org/10.1007/s00427-007-0141-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-007-0141-8

Keywords

Navigation