Skip to main content
Log in

Advantage of audition over vision in a perceptual timing task but not in a sensorimotor timing task

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Timing is essential for various behaviors and relative to vision, audition is considered to be specialized for temporal processing. The present study conducted a sensorimotor timing task that required tapping in synchrony with a temporally regular sequence and a perceptual timing task that required detecting a timing deviation among a temporally regular sequence. The sequence was composed of auditory tones, visual flashes, or a visual bouncing ball. In the sensorimotor task, sensorimotor timing performance (synchronization stability) of the bouncing ball was much greater than that of flashes and was comparable to that of tones. In the perceptual task, where perceptual timing performance of the bouncing ball was greater than that of flashes, it was poorer than that of tones. These results suggest the facilitation of both perceptual and sensorimotor processing of temporal information by the bouncing ball. Given such facilitation of temporal processing, however, audition is still superior over vision in perceptual detection of timing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrams, R. A., & Christ, S. E. (2003). Motion onset captures attention. Psychological Science, 14, 427–432.

    PubMed  Google Scholar 

  • Armstrong, A., Issartel, J., Varlet, M., & Marin, L. (2013). The supplementation of spatial information improves coordination. Neuroscience Letters, 548, 212–216.

    PubMed  Google Scholar 

  • Berens, P. (2009). CircStat: A MATLAB toolbox for circular statistics. Journal of Statistical Software, 31, 1–21.

    Google Scholar 

  • Celma-Miralles, A., de Menezes, R. F., & Toro, J. M. (2016). Look at the beat, feel the meter: Top-down effects of meter induction on auditory and visual modalities. Frontiers in Human Neuroscience, 10, 108.

    PubMed  PubMed Central  Google Scholar 

  • Chen, L., & Vroomen, J. (2013). Intersensory binding across space and time: A tutorial review. Attention, Perception, & Psychophysics, 75, 790–811.

    Google Scholar 

  • Colley, I. D., Varlet, M., MacRitchie, J., & Keller, P. E. (2018). The influence of visual cues on temporal anticipation and movement synchronization with musical sequences. Acta Psychologica, 191, 190–200.

    PubMed  Google Scholar 

  • Costall, A. P. (1984). Are theories of perception necessary? A review of Gibson’s the ecological approach to visual perception. Journal of the Experimental Analysis of Behavior, 41, 109–115.

    PubMed  PubMed Central  Google Scholar 

  • Dalla Bella, S., & Sowiński, J. (2015). Uncovering beat deafness: detecting rhythm disorders with synchronized finger tapping and perceptual timing tasks. Journal of Visualized Experiments. https://doi.org/10.3791/51761.

    Article  PubMed  Google Scholar 

  • Eagleman, D. M., Tse, P. U., Buonomano, D., Janssen, P., Nobre, A. C., & Holcombe, A. O. (2005). Time and the brain: How subjective time relates to neural time. Journal of Neuroscience, 25, 10369–10371.

    PubMed  Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.

    PubMed  Google Scholar 

  • Fisher, N. I. (1993). Statistical Analysis of Circular Data. Cambridge: Cambridge University Press.

    Google Scholar 

  • Fujii, S., & Schlaug, G. (2013). The Harvard Beat Assessment Test (H-BAT): A battery for assessing beat perception and production and their dissociation. Frontiers in Human Neuroscience, 7, 771.

    PubMed  PubMed Central  Google Scholar 

  • Gan, L., Huang, Y., Zhou, L., Qian, C., & Wu, X. (2015). Synchronization to a bouncing ball with a realistic motion trajectory. Scientific Reports, 5, 11974.

    PubMed  PubMed Central  Google Scholar 

  • Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston: Houghton Mifflin.

    Google Scholar 

  • Grahn, J. A., Henry, M. J., & McAuley, J. D. (2011). FMRI investigation of cross-modal interactions in beat perception: Audition primes vision, but not vice versa. NeuroImage, 54, 1231–1243.

    PubMed  PubMed Central  Google Scholar 

  • Grahn, J. A., & Rowe, J. B. (2009). Feeling the Beat: Premotor and Striatal Interactions in Musicians and Nonmusicians during Beat Perception. Journal of Neuroscience, 29, 7540–7548.

    PubMed  Google Scholar 

  • Grube, M., Cooper, F. E., Chinnery, P. F., & Griffiths, T. D. (2010). Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proceedings of the National Academy of Sciences, 107, 11597–11601.

    Google Scholar 

  • Guttman, S. E., Gilroy, L. A., & Blake, R. (2005). Hearing what the eyes see: Auditory encoding of visual temporal sequences. Psychological Science, 16, 228–235.

    PubMed  PubMed Central  Google Scholar 

  • Holcombe, A. O. (2009). Seeing slow and seeing fast: Two limits on perception. Trends in Cognitive Sciences, 13, 216–221.

    PubMed  Google Scholar 

  • Hove, M. J., Fairhurst, M. T., Kotz, S. A., & Keller, P. E. (2013a). Synchronizing with auditory and visual rhythms: An fMRI assessment of modality differences and modality appropriateness. NeuroImage, 67, 313–321.

    PubMed  Google Scholar 

  • Hove, M. J., Iversen, J. R., Zhang, A., & Repp, B. H. (2013b). Synchronization with competing visual and auditory rhythms: Bouncing ball meets metronome. Psychological Research, 77, 388–398.

    PubMed  Google Scholar 

  • Hove, M. J., Spivey, M. J., & Krumhansl, C. L. (2010). Compatibility of motion facilitates visuomotor synchronization. Journal of Experimental Psychology: Human Perception and Performance, 36, 1525–1534.

    PubMed  Google Scholar 

  • Huang, Y., Gu, L., Yang, J., Zhong, S., & Wu, X. (2018). Relative contributions of the speed characteristic and other possible ecological factors in synchronization to a visual beat consisting of periodically moving stimuli. Frontiers in Psychology, 9, 1226.

    PubMed  PubMed Central  Google Scholar 

  • Iversen, J. R., & Balasubramaniam, R. (2016). Synchronization and temporal processing. Current Opinion in Behavioral Sciences, 8, 175–180.

    Google Scholar 

  • Iversen, J. R., Patel, A. D., Nicodemus, B., & Emmorey, K. (2015). Synchronization to auditory and visual rhythms in hearing and deaf individuals. Cognition, 134, 232–244.

    PubMed  Google Scholar 

  • Ivry, R. B. (1996). The representation of temporal information in perception and motor control. Current Opinion in Neurobiology, 6, 851–857.

    PubMed  Google Scholar 

  • Kilner, J., de Hamilton, A. F. C., & Blakemore, S.-J. (2007). Interference effect of observed human movement on action is due to velocity profile of biological motion. Social Neuroscience, 2, 158–166.

    PubMed  Google Scholar 

  • Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in psychtoolbox-3. Perception, 36, 1–16.

    Google Scholar 

  • Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t tests and ANOVAs. Frontiers in Psychology, 4, 863.

    PubMed  PubMed Central  Google Scholar 

  • Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106, 119–159.

    Google Scholar 

  • Lerdahl, F., & Jackendoff, R. (1983). An overview of hierarchical structure in music. Music Perception, 1, 229–252.

    Google Scholar 

  • Manning, F., & Schutz, M. (2013). “Moving to the beat” improves timing perception. Psychonomic Bulletin & Review, 20, 1133–1139.

    Google Scholar 

  • Mauk, M. D., & Buonomano, D. V. (2004). The neural basis of temporal processing. Annual Review of Neuroscience, 27, 307–340.

    PubMed  Google Scholar 

  • Milner, D., & Goodale, M. (2006). The visual brain in action (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Mu, Y., Huang, Y., Ji, C., Gu, L., & Wu, X. (2018). Auditory over visual advantage of sensorimotor synchronization in 6- to 7-year-old children but not in 12- to 15-year-old children and adults. Journal of Experimental Psychology: Human Perception and Performance, 44, 818–826.

    PubMed  Google Scholar 

  • Patel, A. D. (2014). The evolutionary biology of musical rhythm: Was Darwin Wrong? PLoS Biology, 12, e1001821.

    PubMed  PubMed Central  Google Scholar 

  • Patel, A. D., & Iversen, J. R. (2014). The evolutionary neuroscience of musical beat perception: the Action Simulation for Auditory Prediction (ASAP) hypothesis. Frontiers in Systems Neuroscience, 8, 57.

    PubMed  PubMed Central  Google Scholar 

  • Patel, A. D., Iversen, J. R., Chen, Y., & Repp, B. (2005). The influence of metricality and modality on synchronization with a beat. Experimental Brain Research, 163, 226–238.

    PubMed  Google Scholar 

  • Povel, D.-J., & Essens, P. (1985). Perception of temporal patterns. Music Perception, 2, 411–440.

    Google Scholar 

  • Repp, B. H. (2002). Perception of timing is more context sensitive than sensorimotor synchronization. Perception & Psychophysics, 64, 703–716.

    Google Scholar 

  • Repp, B. H. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin & Review, 12, 969–992.

    Google Scholar 

  • Repp, B. H., & Penel, A. (2002). Auditory dominance in temporal processing: new evidence from synchronization with simultaneous visual and auditory sequences. Journal of Experimental Psychology: Human Perception and Performance, 28, 1085–1099.

    PubMed  Google Scholar 

  • Repp, B. H., & Penel, A. (2004). Rhythmic movement is attracted more strongly to auditory than to visual rhythms. Psychological Research, 68, 252–270.

    PubMed  Google Scholar 

  • Repp, B. H., & Su, Y.-H. (2013). Sensorimotor synchronization: A review of recent research (2006–2012). Psychonomic Bulletin & Review, 20, 403–452.

    Google Scholar 

  • Silva, S., & Castro, S. L. (2016). Moving stimuli facilitate synchronization but not temporal perception. Frontiers in Psychology, 7, 1798.

    PubMed  PubMed Central  Google Scholar 

  • Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31, 137–149.

    Google Scholar 

  • Su, Y.-H. (2016). Sensorimotor synchronization with different metrical levels of point-light dance movements. Frontiers in Human Neuroscience, 10, 186.

    PubMed  PubMed Central  Google Scholar 

  • Su, Y.-H., & Pöppel, E. (2012). Body movement enhances the extraction of temporal structures in auditory sequences. Psychological Research, 76, 373–382.

    PubMed  Google Scholar 

  • Teki, S., Grube, M., Kumar, S., & Griffiths, T. D. (2011). Distinct neural substrates of duration-based and beat-based auditory timing. Journal of Neuroscience, 31, 3805–3812.

    PubMed  Google Scholar 

  • Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge: MIT Press.

    Google Scholar 

  • Varlet, M., Coey, C. A., Schmidt, R. C., Marin, L., Bardy, B. G., & Richardson, M. J. (2014). Influence of stimulus velocity profile on rhythmic visuomotor coordination. Journal of Experimental Psychology: Human Perception and Performance, 40, 1849–1860.

    PubMed  Google Scholar 

  • Varlet, M., Marin, L., Issartel, J., Schmidt, R. C., & Bardy, B. G. (2012). Continuity of visual and auditory rhythms influences sensorimotor coordination. PLoS One, 7, e44082.

    PubMed  PubMed Central  Google Scholar 

  • Varlet, M., Schmidt, R. C., & Richardson, M. J. (2017). Influence of stimulus velocity profile on unintentional visuomotor entrainment depends on eye movements. Experimental Brain Research, 235, 3279–3286.

    PubMed  Google Scholar 

  • Vorberg, D., & Wing, A. (1996). Modeling variability and dependence in timing. In H. Heuer & S. W. Keele (Eds.), Handbook of perception and action (pp. 181–262). London: Academic Press.

    Google Scholar 

  • Wu, X., Ashe, J., & Bushara, K. O. (2011). Role of olivocerebellar system in timing without awareness. PNAS, 108, 13818–13822.

    PubMed  Google Scholar 

  • Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: auditory-motor interactions in music perception and production. Nature Reviews Neuroscience, 8, 547–558.

    PubMed  Google Scholar 

  • Zelic, G., Varlet, M., Kim, J., & Davis, C. (2016). Influence of pacer continuity on continuous and discontinuous visuo-motor synchronisation. Acta Psychologica, 169, 61–70.

    PubMed  Google Scholar 

  • Zelic, G., Varlet, M., Wishart, J., Kim, J., & Davis, C. (2018). The dual influence of pacer continuity and pacer pattern for visuomotor synchronisation. Neuroscience Letters, 683, 150–159.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (31371129) and Research Project of Sun Yat-Sen University (26000-31620003).

Author information

Authors and Affiliations

Authors

Contributions

GL, HYY, and WX designed the research; GL and HYY performed the research and analyzed the data; and WX wrote the manuscript.

Corresponding author

Correspondence to Xiang Wu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Data availability

The data generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 726 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, L., Huang, Y. & Wu, X. Advantage of audition over vision in a perceptual timing task but not in a sensorimotor timing task. Psychological Research 84, 2046–2056 (2020). https://doi.org/10.1007/s00426-019-01204-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-019-01204-3

Navigation