Skip to main content
Log in

Task-dependent effects of voluntary space-based and involuntary feature-based attention on visual working memory

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Previous research has shown that visual working memory (VWM) can be modulated by space-based or feature-based attentional selection. However, it remains unclear how the two modes of attention operate jointly to affect VWM, and in particular, if involuntary feature-based attention plays a role in VWM. In this study, a pre-cued change detection paradigm was employed to investigate the concurrent effects of space- and feature-based attention on VWM. Space-based attention was manipulated by informative spatial cueing and by varying the proximity between the test item and the cued (fixated) memory item, while feature-based attention was induced in an involuntary manner by having the test item to share the same color or shape with the cued item on a fraction of trials. The results showed that: (1) the memory performance for the cued items was always better than the uncued items, suggesting a beneficial effect of voluntary spatial attention; (2) with a brief duration of the memory array (250 ms), cue-test proximity benefited VWM in the shape judgment task but not in the color judgment task, whereas with a longer duration (1200 ms), no proximity effect was found for either task; (3) VWM was improved for the same-colored items regardless of the task and duration; (4) VWM was improved for the same-shaped items only in the shape judgment task with the longer duration of the memory array. A discrimination task further showed that the proximity effect associated with VWM reflects a perceptual bottleneck in memory encoding for shape but not for color with a brief display. Our results suggest that involuntary feature-based attention could be triggered by spatial cueing to modulate VWM; involuntary color-based attention facilitates VWM independently of task, whereas shape-based facilitation is task–dependent, i.e., confined only to the shape judgment task, presumably reflecting different attention-guiding potencies of the two features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111.

    Article  PubMed  Google Scholar 

  • Astle, D. E., Summerfield, J., Griffin, I., & Nobre, A. C. (2012). Orienting attention to locations in mental representations. Attention, Perception, & Psychophysics, 74(1), 146–162.

    Article  Google Scholar 

  • Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18(7), 622–628.

    Article  PubMed  Google Scholar 

  • Ben-Av, M. B., & Sagi, D. (1995). Perceptual grouping by similarity and proximity: Experimental results can be predicted by intensity autocorrelations. Vision Research, 35(6), 853–866.

    Article  PubMed  Google Scholar 

  • Berryhill, M. E., Richmond, L. L., Shay, C. S., & Olson, I. R. (2012). Shifting attention among working memory representations: Testing cue type, awareness, and strategic control. Quarterly Journal of Experimental Psychology, 65(3), 426–438.

    Article  Google Scholar 

  • Broadbent, D. (1982). Task combination and selective intake of information. Acta Psychologica, 50, 253–290.

    Article  PubMed  Google Scholar 

  • Carrasco, M. (2011). Visual attention: The past 25 years. Vision research, 51(13), 1484–1525.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71.

    Article  PubMed  Google Scholar 

  • Cowan, N. (2001). Metatheory of storage capacity limits. Behavioral and Brain Sciences, 24(01), 154–176.

    Article  Google Scholar 

  • Cowan, N., Naveh-Benjamin, M., Kilb, A., & Saults, J. S. (2006). Life-span development of visual working memory: When is feature binding difficult? Developmental Psychology, 42(6), 1089.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36(12), 1827–1837.

    Article  PubMed  Google Scholar 

  • Driver, J., & Spence, C. (1998). Attention and the crossmodal construction of space. Trends in Cognitive Sciences, 2(7), 254–262.

    Article  PubMed  Google Scholar 

  • Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113(4), 501.

    Article  Google Scholar 

  • Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual attention between objects and locations: evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General, 123(2), 161.

    Article  Google Scholar 

  • Eimer, M. (2014). The neural basis of attentional control in visual search. Trends in Cognitive Sciences, 18(10), 526–535.

    Article  PubMed  Google Scholar 

  • Engbert, R., Longtin, A., & Kliegl, R. (2002). A dynamical model of saccade generation in reading based on spatially distributed lexical processing. Vision Research, 42(5), 621–636.

    Article  PubMed  Google Scholar 

  • Eriksen, C. W., & Hoffman, J. E. (1973). The extent of processing of noise elements during selective encoding from visual displays. Perception & Psychophysics, 14(1), 155–160.

    Article  Google Scholar 

  • Eriksen, C. W., & James, J. D. S. (1986). Visual attention within and around the field of focal attention: A zoom lens model. Perception & Psychophysics, 40(4), 225–240.

    Article  Google Scholar 

  • Eriksen, C. W., & Yeh, Y. (1985). Allocation of attention in the visual field. Journal of Experimental Psychology: Human Perception and Performance, 11(5), 583.

    PubMed  Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.

    Article  PubMed  Google Scholar 

  • Fine, M. S., & Minnery, B. S. (2009). Visual salience affects performance in a working memory task. Journal of Neuroscience, 29(25), 8016–8021.

    Article  PubMed  Google Scholar 

  • Foerster, R. M., & Schneider, W. X. (2018). Involuntary top-down control by search-irrelevant features: Visual working memory biases attention in an object-based manner. Cognition, 172, 37–45.

    Article  PubMed  Google Scholar 

  • Folk, C. L., & Remington, R. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24, 847–858.

    PubMed  Google Scholar 

  • Fougnie, D., Asplund, C. L., & Marois, R. (2010). What are the units of storage in visual working memory? Journal of Vision, 10(12), 27–27.

    Article  PubMed  Google Scholar 

  • Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129–135.

    Article  PubMed  Google Scholar 

  • Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15(8), 1176–1194.

    Article  PubMed  Google Scholar 

  • Hawkins, H. L., Hillyard, S. A., Luck, S. J., Mouloua, M., Downing, C. J., & Woodward, D. P. (1990). Visual attention modulates signal detectability. Journal of Experimental Psychology: Human Perception and Performance, 16, 802–811.

    PubMed  Google Scholar 

  • Heuer, A., & Schubö, A. (2016). Feature-based and spatial attentional selection in visual working memory. Memory & Cognition, 44(4), 621–632.

    Article  Google Scholar 

  • Heuer, A., Schubö, A., & Crawford, J. (2016). Different cortical mechanisms for spatial vs. feature-based attentional selection in visual working memory. Frontiers in Human Neuroscience, 10, 415.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hollingworth, A., & Beck, V. M. (2016). Memory-based attention capture when multiple items are maintained in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 42(7), 911.

    PubMed  Google Scholar 

  • Huang, L., & Pashler, H. (2007). A boolean map theory of visual attention. Psychological Review, 114(3), 599.

    Article  PubMed  Google Scholar 

  • Huffman, G., Al-Aidroos, N., & Pratt, J. (2015). The interaction between spatial cueing and cue-target feature similarity. Journal of Vision, 15, 895.

    Article  Google Scholar 

  • Janczyk, M., & Reuss, H. (2016). Only pre-cueing but no retro-cueing effects emerge with masked arrow cues. Consciousness and Cognition, 42, 93–100.

    Article  PubMed  Google Scholar 

  • Jiang, Y., Chun, M. M., & Olson, I. R. (2004). Perceptual grouping in change detection. Perception & Psychophysics, 66(3), 446–453.

    Article  Google Scholar 

  • Johansson, R., & Johansson, M. (2014). Look here, eye movements play a functional role in memory retrieval. Psychological Science, 25(1), 236–242.

    Article  PubMed  Google Scholar 

  • Kalogeropoulou, Z., Jagadeesh, A. V., Ohl, S., & Rolfs, M. (2017). Setting and changing feature priorities in visual short-term memory. Psychonomic Bulletin & Review, 24(2), 453–458.

    Article  Google Scholar 

  • Kanwisher, N., & Driver, J. (1992). Objects, attributes, and visual attention: Which, what, and where. Current Directions in Psychological Science, 1(1), 26–31.

    Article  Google Scholar 

  • Lambert, A. J., & Hockey, R. (1986). Selective attention and performance with a multidimensional visual display. Journal of Experimental Psychology: Human Perception and Performance, 12(4), 484.

    PubMed  Google Scholar 

  • Lamy, D., & Tsal, Y. (2000). Object features, object locations, and object files: Which does selective attention activate and when? Journal of Experimental Psychology: Human Perception and Performance, 26(4), 1387.

    PubMed  Google Scholar 

  • Lamy, D., & Tsal, Y. (2001). On the status of location in visual attention. European Journal of Cognitive Psychology, 13(3), 305–342.

    Article  Google Scholar 

  • Landman, R., Spekreijse, H., & Lamme, V. A. (2003). Large capacity storage of integrated objects before change blindness. Vision research, 43(2), 149–164.

    Article  PubMed  Google Scholar 

  • Lavie, N., & Driver, J. (1996). On the spatial extent of attention in object-based visual selection. Perception & Psychophysics, 58(8), 1238–1251.

    Article  Google Scholar 

  • Li, J., Qian, J., & Liang, F. (2018). Evidence for the beneficial effect of perceptual grouping on visual working memory: an empirical study on illusory contour and a meta-analytic study. Scientific Reports, 8(1), 13864.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Q., & Saiki, J. (2015). Different effects of color-based and location-based selection on visual working memory. Attention, Perception, & Psychophysics, 77(2), 450–463.

    Article  Google Scholar 

  • Liu, T., Beckera, M. W., & Jigoa, M. (2013). Limited featured-based attention to multiple features. Vision Research, 85(7), 36–44.

    Article  PubMed  Google Scholar 

  • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281.

    Article  PubMed  Google Scholar 

  • Makovski, T., Sussman, R., & Jiang, Y. V. (2008). Orienting attention in visual working memory reduces interference from memory probes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(2), 369.

    PubMed  Google Scholar 

  • Martinez-Trujillo, J. C., & Treue, S. (2004). Feature-based attention increases the selectivity of population responses in primate visual cortex. Current Biology, 14, 744–751.

    Article  PubMed  Google Scholar 

  • Matsukura, M., Luck, S. J., & Vecera, S. P. (2007). Attention effects during visual short-term memory maintenance: protection or prioritization? Perception & Psychophysics, 69(8), 1422–1434.

    Article  Google Scholar 

  • McMains, S. A., Fehd, H. M., Emmanouil, T.-A., & Kastner, S. (2007). Mechanisms of feature-and space-based attention: response modulation and baseline increases. Journal of Neurophysiology, 98(4), 2110–2121.

    Article  PubMed  Google Scholar 

  • Melcher, D., & Piazza, M. (2011). The role of attentional priority and saliency in determining capacity limits in enumeration and visual working memory. PLoS One, 6(12), e29296.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moorselaar, D., Battistoni, E., Theeuwes, J., & Olivers, C. N. (2015). Rapid influences of cued visual memories on attentional guidance. Annals of the New York academy of Sciences, 1339(1), 1–10.

    Article  PubMed  Google Scholar 

  • Mozer, M. C. (2002). Frames of reference in unilateral neglect and visual perception: a computational perspective. Psychological Review, 109(1), 156.

    Article  PubMed  Google Scholar 

  • Mozer, M. C., & Vecera, S. P. (2005). Space-and object-based attention. Neurobiology of attention. New York: Elsevier, pp. 130–134).

    Book  Google Scholar 

  • Muller, H. J., & Findlay, J. M. (1987). Sensitivity and criterion effects in the spatial cuing of visual attention. Perception & Psychophysics, 42, 383–399.

    Article  Google Scholar 

  • Muller, H. J., & Rabbit, P. M. A. (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15, 315–330.

    PubMed  Google Scholar 

  • Murray, A. M., Nobre, A. C., Clark, I. A., Cravo, A. M., & Stokes, M. G. (2013). Attention restores discrete items to visual short-term memory. Psychological Science, 24(4), 550–556.

    Article  PubMed  Google Scholar 

  • Myers, N. E., Stokes, M. G., & Nobre, A. C. (2017). Prioritizing information during working memory: beyond sustained internal attention. Trends in Cognitive Sciences, 21(6), 449–461.

    Article  PubMed  PubMed Central  Google Scholar 

  • Niklaus, M., Nobre, A. C., & Van Ede, F. (2017). Feature-based attentional weighting and spreading in visual working memory. Scientific reports, 7, 42384.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nobre, A. C., Coull, J., Maquet, P., Frith, C., Vandenberghe, R., & Mesulam, M. (2004). Orienting attention to locations in perceptual versus mental representations. Journal of Cognitive Neuroscience, 16(3), 363–373.

    Article  PubMed  Google Scholar 

  • Ohl, S., & Rolfs, M. (2017). Saccadic eye movements impose a natural bottleneck on visual short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(5), 736.

    PubMed  Google Scholar 

  • Olivers, C. N., Meijer, F., & Theeuwes, J. (2006). Feature-based memory-driven attentional capture: visual working memory content affects visual attention. Journal of Experimenta Psychology: Human Perception and Performance, 32(5), 1243.

    Google Scholar 

  • Olsen, R. K., Chiew, M., Buchsbaum, B. R., & Ryan, J. D. (2014). The relationship between delay period eye movements and visuospatial memory. Journal of Vision, 14(1), 8–8.

    Article  PubMed  Google Scholar 

  • Pashler, H. (1988). Familiarity and visual change detection. Perception & Psychophysics, 44(4), 369–378.

    Article  Google Scholar 

  • Pedale, T., & Santangelo, V. (2015). Perceptual salience affects the contents of working memory during free-recollection of objects from natural scenes. Frontiers in Human Neuroscience, 9, 60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pertzov, Y., Bays, P. M., Joseph, S., & Husain, M. (2013). Rapid forgetting prevented by retrospective attention cues. Journal of Experimental Psychology: Human Perception and Performance, 39(5), 1224.

    PubMed  Google Scholar 

  • Peterson, D. J., & Berryhill, M. E. (2013). The gestalt principle of similarity benefits visual working memory. Psychonomic Bulletin & Review, 20(6), 1282–1289.

    Article  Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25.

    Article  Google Scholar 

  • Qian, J., Li, J., Wang, K., Liu, S., & Lei, Q. (2017). Evidence for the effect of depth on visual working memory. Scientific Reports, 7(1), 6408. https://doi.org/10.1038/s41598-017-06719-6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian, J., Zhang, K., Wang, K., Li, J., & Lei, Q. (2018). Saturation and brightness modulate the effect of depth on visual working memory. Journal of Vision, 18(9), 16, 1–12.

    Article  Google Scholar 

  • Rolfs, M., & Carrasco, M. (2012). Rapid simultaneous enhancement of visual sensitivity and perceived contrast during saccade preparation. Journal of Neuroscience, 32(40), 13744–13752a.

    Article  PubMed  Google Scholar 

  • Ryan, J. D., & Villate, C. (2009). Building visual representations: The binding of relative spatial relations across time. Visual Cognition, 17(1–2), 254–272.

    Article  Google Scholar 

  • Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31(2), 248.

    PubMed  Google Scholar 

  • Souza, A. S., & Oberauer, K. (2016). In search of the focus of attention in working memory: 13 years of the retro-cue effect. Attention, Perception, & Psychophysics, 78(7), 1839–1860.

    Article  Google Scholar 

  • Tanoue, R. T., & Berryhill, M. E. (2012). The mental wormhole: internal attention shifts without regard for distance. Attention, Perception, & Psychophysics, 74(6), 1199–1215.

    Article  Google Scholar 

  • Theeuwes, J. (1989). Effects of location and form cuing on the allocation of attention in the visual field. Acta Psychologica, 72(2), 177–192.

    Article  PubMed  Google Scholar 

  • Thornton, T. L., & Gilden, D. L. (2007). Parallel and serial processes in visual search. Psychological Review, 114(1), 71.

    Article  PubMed  Google Scholar 

  • Traxler, M. (2011). Introduction to psycholinguistics: Understanding language science. Hoboken: Wiley.

    Google Scholar 

  • Vecera, S. P. (1994). Grouped locations and object-based attention: Comment on egly, driver, and rafal (1994). Journal of Experimental Psychology: General, 123(3), 316–320.

    Article  Google Scholar 

  • Vecera, S. P., & Farah, M. J. (1994). Does visual attention select objects or locations? Journal of Experimental Psychology: General, 123(2), 146.

    Article  Google Scholar 

  • Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92.

    PubMed  Google Scholar 

  • White, A. L., & Carrasco, M. (2011). Feature-based attention involuntarily and simultaneously improves visual performance across locations. Journal of Vision, 11(6), 15–15.

    Article  PubMed  Google Scholar 

  • Williams, M., Pouget, P., Boucher, L., & Woodman, G. F. (2013). Visual–spatial attention aids the maintenance of object representations in visual working memory. Memory & Cognition, 41(5), 698–715.

    Article  Google Scholar 

  • Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1(3), 0058.

    Article  Google Scholar 

  • Woodman, G. F., Vecera, S. P., & Luck, S. J. (2003). Perceptual organization influences visual working memory. Psychonomic Bulletin & Review, 10(1), 80–87.

    Article  Google Scholar 

  • Woodman, G. F., Vogel, E. K., & Luck, S. J. (2001). Visual search remains efficient when visual working memory is full. Psychological Science, 12(3), 219–224.

    Article  PubMed  Google Scholar 

  • Xu, Y. (2002). Encoding color and shape from different parts of an object in visual short-term memory. Perception & Psychophysics, 64(8), 1260–1280.

    Article  Google Scholar 

  • Xu, Y. (2006). Understanding the object benefit in visual short-term memory: The roles of feature proximity and connectedness. Perception & Psychophysics, 68(5), 815–828.

    Article  Google Scholar 

  • Xu, Y., & Chun, M. M. (2007). Visual grouping in human parietal cortex. Proceedings of the National Academy of Sciences, 104(47), 18766–18771.

    Article  Google Scholar 

  • Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233–235.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhuang, X., & Papathomas, T. V. (2011). Cue relevance effects in conjunctive visual search: Cueing for location, color, and orientation. Journal of Vision, 11(7), 6–6.

    Article  PubMed  Google Scholar 

  • Baddeley, A. (2003). Working memory: looking back and looking forward. Nature Review Neuroscience, 4(10), 829–839.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by the National Natural Science Foundation of China (31500919). We thank Shengxi Liu for collecting data for Experiment 2.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: JQ. Performed the experiments: KZ, YH, WL. Analyzed the data: JQ. Wrote the paper: JQ, QL. Review the paper: JQ, QL.

Corresponding authors

Correspondence to Jiehui Qian or Quan Lei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, J., Zhang, K., Lei, Q. et al. Task-dependent effects of voluntary space-based and involuntary feature-based attention on visual working memory. Psychological Research 84, 1304–1319 (2020). https://doi.org/10.1007/s00426-019-01161-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-019-01161-x

Navigation