Skip to main content
Log in

Naturally together: pitch-height and brightness as coupled factors for eliciting the SMARC effect in non-musicians

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Pitch-height is often labeled spatially (i.e., low or high) as a function of the fundamental frequency of the tone. This correspondence is highlighted by the so-called Spatial–Musical Association of Response Codes (SMARC) effect. However, the literature suggests that the brightness of the tone’s timbre might contribute to this spatial association. We investigated the SMARC effect in a group of non-musicians by disentangling the role of pitch-height and the role of tone-brightness. In three experimental conditions, participants were asked to judge whether the tone they were listening to was (or was not) modulated in amplitude (i.e., vibrato). Participants were required to make their response in both the horizontal and the vertical axes. In a first condition, tones varied coherently in pitch (i.e., manipulation of the tone’s F0) and brightness (i.e., manipulation of the tone’s spectral centroid); in a second condition, pitch-height varied whereas brightness was fixed; in a third condition, pitch-height was fixed whereas brightness varied. We found the SMARC effect only in the first condition and only in the vertical axis. In contrast, we did not observe the effect in any of the remaining conditions. The present results suggest that, in non-musicians, the SMARC effect is not due to the manipulation of the pitch-height alone, but arises because of a coherent change of pitch-height and brightness; this effect emerges along the vertical axis only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adair, J. C., Williamson, D. J., Jacobs, D. H., Na, D. L., & Heilman, K. M. (1995). Neglect of radial and vertical space: importance of the retinotopic reference frame. Journal of Neurology, Neurosurgery and Psychiatry, 58(6), 724–728.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berch, D. B., Foley, E. J., Hill, R. J., & Ryan, P. M. (1999). Extracting parity and magnitude from Arabic numerals: developmental changes in number processing and mental representation. Journal of Experimental Child Psychology, 74(4), 286–308.

    Article  PubMed  Google Scholar 

  • Berlucchi, G., Tassinari, G., & Aglioti, S. (1994). Callosal pathways for simple visuomotor control in man. Rendiconti Lincei, 5(2), 191–201.

    Article  Google Scholar 

  • Borchert, E. M. O., Micheyl, C., & Oxenham, A. J. (2011). Perceptual grouping affects pitch judgments across time and frequency. Journal of Experimental Psychology: Human Perception and Performance, 37(1), 257–269.

    PubMed  PubMed Central  Google Scholar 

  • Cappelletti, M., Freeman, E. D., & Cipolotti, L. (2007). The middle house or the middle floor: bisecting horizontal and vertical mental number lines in neglect. Neuropsychologia, 45(13), 2989–3000.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho, Y. S., Bae, G. Y., & Proctor, R. W. (2012). Referential coding contributes to the horizontal SMARC effect. Journal of Experimental Psychology Human Perception and Performance, 38(3), 726–734.

    Article  PubMed  Google Scholar 

  • Cho, Y. S., & Proctor, R. W. (2003). Stimulus and response representations underlying orthogonal stimulus–response compatibility effects. Psychonomic Bulletin and Review, 10(1), 45–73.

    Article  PubMed  Google Scholar 

  • Cohen Kadosh, R., & Henik, A. (2006). A common representation for semantic and physical properties. Experimental Psychology, 53(2), 87–94.

    Article  PubMed  Google Scholar 

  • Cohen Kadosh, R., Sagiv, N., Linden, D. E. J., Robertson, L. C., Elinger, G., & Henik, A. (2005). When blue is larger than red: colors influence numerical cognition in synesthesia. Journal of Cognitive Neuroscience, 17(11), 1766–1773.

    Article  PubMed  Google Scholar 

  • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology General, 122(3), 371–396.

    Article  Google Scholar 

  • Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P., & Orban, G. A. (2003). Parietal representation of symbolic and nonsymbolic magnitude. Journal of Cognitive Neuroscience, 15(1), 47–56.

    Article  PubMed  Google Scholar 

  • Fischer, M. H., Riello, M., Giordano, B. L., & Rusconi, E. (2013). Singing numbers…in cognitive space–a dual-task study of the link between pitch, space, and numbers. Topics in Cognitive Science, 5(2), 354–366.

    Article  PubMed  Google Scholar 

  • Fischer, M. H., & Shaki, S. (2014). Spatial associations in numerical cognition–from single digits to arithmetic. Quarterly Journal of Experimental Psychology (2006), 67(8), 1461–1483.

    Article  Google Scholar 

  • Geldmacher, D. S., & Heilman, K. M. (1994). Visual field influence on radial line bisection. Brain and Cognition, 26(1), 65–72.

    Article  PubMed  Google Scholar 

  • Gevers, W., Reynvoet, B., & Fias, W. (2003). The mental representation of ordinal sequences is spatially. Cognition, 87(3), B87–B95.

    Article  PubMed  Google Scholar 

  • Gevers, W., Reynvoet, B., & Fias, W. (2004). The mental representation of ordinal sequences is spatially organized: evidence from days of the week. Cortex, 40(1), 171–172.

    Article  PubMed  Google Scholar 

  • Gevers, W., Verguts, T., Reynvoet, B., Caessens, B., & Fias, W. (2006). Numbers and space: a computational model of the SNARC effect. Journal of Experimental Psychology Human Perception and Performance, 32(1), 32–44.

    Article  PubMed  Google Scholar 

  • Gibson, J. J. (1963). The useful dimensions of sensitivity. American Psychologist, 18(1), 1–15.

    Article  Google Scholar 

  • Giordano, B. L., Rocchesso, D., & McAdams, S. (2010). Integration of acoustical information in the perception of impacted sound sources: the role of information accuracy and exploitability. Journal of Experimental Psychology Human Perception and Performance, 36(2), 462–476.

    Article  PubMed  Google Scholar 

  • Gobel, S. M., Shaki, S., & Fischer, M. H. (2011). The cultural number line: a review of cultural and linguistic influences on the development of number processing. Journal of Cross-Cultural Psychology, 42(4), 543–565.

    Article  Google Scholar 

  • Gordon, M. S., Russo, F. A., & MacDonald, E. (2013). Spectral information for detection of acoustic time to arrival. Attention, Perception, and Psychophysics, 75(4), 738–750.

    Article  Google Scholar 

  • Grade, S., Lefèvre, N., & Pesenti, M. (2013). Influence of gaze observation on random number generation. Experimental Psychology, 60(2), 122–130.

    Article  PubMed  Google Scholar 

  • Grassi, M. (2005). Do we hear size or sound? Balls dropped on plates. Perception and Psychophysics, 67(2), 274–284.

    Article  PubMed  Google Scholar 

  • Grassi, M., Pastore, M., & Lemaitre, G. (2013). Looking at the world with your ears: how do we get the size of an object from its sound? Acta Psychologica, 143(1), 96–104.

    Article  PubMed  Google Scholar 

  • Grassi, M., & Soranzo, A. (2009). MLP: a MATLAB toolbox for rapid and reliable auditory threshold estimation. Behavior Research Methods, 41(1), 20–28.

    Article  PubMed  Google Scholar 

  • Grey, J. M., & Gordon, J. W. (1978). Perceptual effects of spectral modifications on musical timbres. The Journal of the Acoustical Society of America, 63(5), 1493–1500.

    Article  Google Scholar 

  • Haas, E. C., & Edworthy, J. (1996). Designing urgency into auditory warnings using pitch, speed and loudness. Computing and Control Engineering Journal, 7(4), 193.

    Article  Google Scholar 

  • Hartmann, M., Gashaj, V., Stahnke, A., & Mast, F. W. (2014). There is more than “more is up”: hand and foot responses reverse the vertical association of number magnitudes. Journal of Experimental Psychology Human Perception and Performance, 40(4), 1401–1414.

    Article  PubMed  Google Scholar 

  • Hartmann, M., Grabherr, L., & Mast, F. W. (2012). Moving along the mental number line: interactions between whole-body motion and numerical cognition. Journal of Experimental Psychology Human Perception and Performance, 38(6), 1416–1427.

    Article  PubMed  Google Scholar 

  • Hartmann, M., Mast, F. W., & Fischer, M. H. (2015). Spatial biases during mental arithmetic: evidence from eye movements on a blank screen. Frontiers in Psychology, 6, 1–8.

    Article  Google Scholar 

  • Holmes, K. J., & Lourenco, S. F. (2012). Orienting numbers in mental space: horizontal organization trumps vertical. Quarterly Journal of Experimental Psychology, 65(6), 1044–1051.

    Article  Google Scholar 

  • Ishihara, M., Keller, P. E., Rossetti, Y., & Prinz, W. (2008). Horizontal spatial representations of time: evidence for the STEARC effect. Cortex, 44(4), 454–461.

    Article  PubMed  Google Scholar 

  • Ito, Y., & Hatta, T. (2004). Spatial structure of quantitative representation of numbers: evidence from the SNARC effect. Memory and Cognition, 32(4), 662–673.

    Article  PubMed  Google Scholar 

  • Lega, C., Cattaneo, Z., Merabet, L. B., Vecchi, T., & Cucchi, S. (2014). The effect of musical expertise on the representation of space. Frontiers in Human Neuroscience, 8, 250.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewkowicz, D. J. & Minar, N. (2014). Infants are not sensitive to synesthetic cross-modality correspondences. A comment to Walker et al. (2010). Psychological Science, 25, 832–834.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lidji, P., Kolinsky, R., Lochy, A., & Morais, J. (2007). Spatial associations for musical stimuli: a piano in the head? Journal of Experimental Psychology Human Perception and Performance, 33(5), 1189–1207.

    Article  PubMed  Google Scholar 

  • Loetscher, T., Bockisch, C. J., Nicholls, M. E. R., & Brugger, P. (2010). Eye position predicts what number you have in mind. Current Biology CB, 20(6), R264–R265.

    Article  PubMed  Google Scholar 

  • Ludwig, V. U., Adachi, I., & Matsuzawa, T. (2011). Visuoauditory mappings between high luminance and high pitch are shared by chimpanzees (Pan troglodytes) and humans. PNAS, 108(51), 20661–20665.

    Article  PubMed  PubMed Central  Google Scholar 

  • McAdams, S. (2012). Musical timbre perception. In D. Deutsch (Ed.), The psychology of music (pp. 35–67). Oxford: Elsevier Academic Press.

    Google Scholar 

  • McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., & Krimphoff, J. (1995). Perceptual scaling of synthesized musical timbres: common dimensions, specificities, and latent subject classes. Psychological Research, 58(3), 177–192.

    Article  PubMed  Google Scholar 

  • McDermott, J. H., Lehr, A. J., & Oxenham, A. J. (2008). Is relative pitch specific to pitch? Psychological Science, 19(12), 1263–1271.

    Article  PubMed  PubMed Central  Google Scholar 

  • Melara, R. D., & Marks, L. E. (1990). Interaction among auditory dimensions: timbre, pitch, and loudness. Perception and Psychophysics, 48(2), 169–178.

    Article  PubMed  Google Scholar 

  • Müller, D., & Schwarz, W. (2007). Is there an internal association of numbers to hands? The task set influences the nature of the SNARC effect. Memory and Cognition, 35(5), 1151–1161.

    Article  PubMed  Google Scholar 

  • Nava, E., Grassi, M., & Turati, C. (2015). Audio-visual, visuo-tactile and audio-tactile correspondences in preschoolers. Multisensory Research,. doi:10.1163/22134808-00002493.

    Google Scholar 

  • Nishimura, A., & Yokosawa, K. (2009). Effects of laterality and pitch height of an auditory accessory stimulus on horizontal response selection: the Simon effect and the SMARC effect. Psychonomic Bulletin and Review, 16(4), 666–670.

    Article  PubMed  Google Scholar 

  • Nygaard, L. C., Herold, D. S., & Namy, L. L. (2009). The semantics of prosody: acoustic and perceptual evidence of prosodic correlates to word meaning. Cognitive Science, 33(1), 127–146.

    Article  PubMed  Google Scholar 

  • Oxenham, A. J. (2012). Pitch perception. The Journal of Neuroscience, 32(39), 13335–13338.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parise, C. V., Knorre, K., & Ernst, M. O. (2014). Natural auditory scene statistics shapes human spatial hearing. PNAS, 111(16), 6104–6108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parkinson, C., Kohler, P. J., Sievers, B., & Wheatley, T. (2012). Associations between auditory pitch and visual elevation do not depend on language: evidence from a remote population. Perception, 41(7), 854–861.

    Article  PubMed  Google Scholar 

  • Pratt, C. C. (1930). The spatial character of high and low tones. Journal of Experimental Psychology, 13, 278–285.

    Article  Google Scholar 

  • Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015). Animal cognition. Number-space mapping in the newborn chick resembles humans’ mental number line. Science, 347(6221), 534–536.

    Article  PubMed  Google Scholar 

  • Rusconi, E., Kwan, B., Giordano, B. L., Umiltà, C., & Butterworth, B. (2006). Spatial representation of pitch height: the SMARC effect. Cognition, 99(2), 113–129.

    Article  PubMed  Google Scholar 

  • Russo, F. A., & Thompson, W. F. (2005). The subjective size of melodic intervals over a two-octave range. Psychonomic Bulletin and Review, 12(6), 1068–1075.

    Article  PubMed  Google Scholar 

  • Shaki, S., & Fischer, M. H. (2012). Multiple spatial mappings in numerical cognition. Journal of Experimental Psychology Human Perception and Performance, 38(3), 804–809.

    Article  PubMed  Google Scholar 

  • Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin and Review, 16(2), 328–331.

    Article  PubMed  Google Scholar 

  • Shimizu, H. (2002). Measuring keyboard response delays by comparing keyboard and joystick inputs. Behavior Research Methods, Instruments, and Computers, 34(2), 250–256.

    Article  PubMed  Google Scholar 

  • Soranzo, A., & Grassi, M. (2014). PSYCHOACOUSTICS: a comprehensive MATLAB toolbox for auditory testing. Frontiers in Psychology, 5, 712.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stern, D. N., Spieker, S., & MacKain, K. (1982). Intonation contours as signals in maternal speech to prelinguistic infants. Developmental Psychology, 18(5), 727–735.

    Article  Google Scholar 

  • Vallesi, A., Binns, M. A., & Shallice, T. (2008). An effect of spatial–temporal association of response codes: understanding the cognitive representations of time. Cognition, 107(2), 501–527.

    Article  PubMed  Google Scholar 

  • Van Selst, M., & Jolicoeur, P. (1994). A solution to the effect of sample size on outlier elimination. The Quarterly Journal of Experimental Psychology Section A, 47(3), 631–650.

    Article  Google Scholar 

  • Vu, K. P., Proctor, R. W., & Pick, D. F. (2000). Vertical versus horizontal spatial compatibility: right–left prevalence with bimanual responses. Psychological Research, 64(1), 25–40.

    Article  PubMed  Google Scholar 

  • Walker, P., Bremner, J. G., Mason, U., Spring, J., Mattock, K., Slater, A., & Johnson, S. P. (2010). Preverbal infants’ sensitivity to synaesthetic cross-modality correspondences. Psychological Science, 21, 21–25.

    Article  PubMed  Google Scholar 

  • Wood, G., Nuerk, H.-C., & Willmes, K. (2006). Crossed hands and the SNARC effect: a failure to replicate Dehaene, Bossini, and Giraux (1993). Cortex, 42(8), 1069–1079.

    Article  PubMed  Google Scholar 

  • Zebian, S. (2005). Linkages between number concepts, spatial thinking, and directionality of writing: the SNARC effect and the REVERSE SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture, 5(1–2), 165–190.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Michele Scaltritti, Ph.D., for helping us with RTs analysis and all the participants for their time and effort. The present study is dedicated to the beloved memory of Mauro Marchetti.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pitteri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the present study, which involves human participants, were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WAV 86 kb)

Supplementary material 2 (WAV 86 kb)

Supplementary material 3 (WAV 86 kb)

Supplementary material 4 (WAV 86 kb)

Supplementary material 5 (WAV 86 kb)

Supplementary material 6 (WAV 86 kb)

Supplementary material 7 (WAV 86 kb)

Supplementary material 8 (WAV 86 kb)

Supplementary material 9 (WAV 86 kb)

Supplementary material 10 (WAV 86 kb)

Supplementary material 11 (WAV 86 kb)

Supplementary material 12 (WAV 86 kb)

Supplementary material 13 (WAV 86 kb)

Supplementary material 14 (WAV 86 kb)

Supplementary material 15 (WAV 86 kb)

Supplementary material 16 (WAV 86 kb)

Supplementary material 17 (WAV 86 kb)

Supplementary material 18 (WAV 86 kb)

Supplementary material 19 (WAV 86 kb)

Supplementary material 20 (WAV 86 kb)

Supplementary material 21 (WAV 86 kb)

Supplementary material 22 (WAV 86 kb)

Supplementary material 23 (WAV 86 kb)

Supplementary material 24 (WAV 86 kb)

Appendix

Appendix

 

Modulated (vibrato)

Non-modulated (normal)

848.1 Hz

1132.1 Hz

1511.2 Hz

2017.2 Hz

848.1 Hz

1132.1 Hz

1511.2 Hz

2017.2 Hz

Mean

SD

Mean

SD

Mean

SD

Mean

SD

Mean

SD

Mean

SD

Mean

SD

Mean

SD

Pitch-height varied

 Horizontal

577

157

566

146

586

173

606

179

634

175

599

145

561

132

565

140

Brightness varied

 Vertical

610

170

587

175

594

161

611

178

631

177

608

159

590

164

591

162

Pitch-height varied

 Horizontal

571

160

563

171

574

179

598

167

622

179

587

159

576

170

554

151

Brightness fixed

 Vertical

571

150

581

156

603

159

605

168

639

157

599

148

571

149

572

137

Pitch-height fixed

 Horizontal

583

167

563

133

546

142

567

142

573

141

576

161

574

143

575

161

Brightness varied

 Vertical

611

167

597

165

561

137

594

163

582

157

592

163

595

155

586

161

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitteri, M., Marchetti, M., Priftis, K. et al. Naturally together: pitch-height and brightness as coupled factors for eliciting the SMARC effect in non-musicians. Psychological Research 81, 243–254 (2017). https://doi.org/10.1007/s00426-015-0713-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-015-0713-6

Keywords

Navigation