Skip to main content
Log in

The influence of attentional control on stimulus processing is category specific in Stroop tasks

Attentional control

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

It is still unclear how attentional control influences stimulus processing. We investigated this issue in four Stroop task experiments utilizing a pretest–training–posttest design. Subjects were given extensive training on the Stroop task using typical incongruent Stroop trials. The rates of color naming and word reading, which reflect the efficiency of stimulus processing, were assessed in pretest and posttest. The difference in rates between posttests and pretests reflects the influence of attentional control, acquired during the training phase, on stimulus processing. In Experiment 1, members of color category were used in the training phase; in Experiment 2, members of color category were used, but not in the training phase; in Experiment 3, they were neither in the color category nor were they used in the training. The results consistently showed that the suppression of word reading and the enhancement of color naming were developed in the training phases and they were not due to general training of color-naming task without conflict but to color-naming training with Stroop conflict (Experiment 4). More importantly, both suppression and enhancement affected the members of color category regardless of whether they were trained or not. The present findings suggest that the influence of attentional control on stimulus processing is category specific. We discuss the implications of the present results in terms of existing research on the locus of attentional control in Stroop tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allport, A., & Wylie, G. (2000). Task switching, stimulus-response bindings and negative priming. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: attention and performance. XVIII (pp. 35–70), Cambridge: MIT Press.

  • Banich, M. T., Milham, M. P., Atchley, R., Cohen, N. J., Webb, A., Wszalek, T., Magin, R. (2000). fMRI studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection. Journal of Cognitive Neuroscience, 12(6), 988–1000.

    Google Scholar 

  • Bench, C. J., Frith, C. D., Grasby, P. M., Friston, K. J., Paulesu, E., Frackowiak, R. S., et al. (1993). Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia, 31(9), 907–922. doi:0028-3932(93)90147-R.

    Article  PubMed  Google Scholar 

  • Broadbent, D. E. (1957). A mechanical model for human attention and immediate memory. Psychological Review, 64(3), 205–215. doi:10.1037/h0047313.

    Article  PubMed  Google Scholar 

  • Carter, C. S., Mintun, M., & Cohen, J. D. (1995). Interference and facilitation effects during selective attention: an H215O PET study of Stroop task performance. NeuroImage, 2(4), 264–272. doi:10.1006/nimg.1995.1034.

    Article  PubMed  Google Scholar 

  • Chen, A., Bailey, K., Tiernan, B. N., & West, R. (2011). Neural correlates of stimulus and response interference in a 2-1 mapping Stroop task. International Journal of Psychophysiology, 80, 129–138. doi:10.1016/j.ijpsycho.2011.02.012.

    Article  PubMed  Google Scholar 

  • Chen, A., Chen, X., Zhang, Q., & Li, H. (2012) Training with a 2-1 mapping paradigm reveals the profile of Stroop effects. Spanish Journal of Psychology (under revision).

  • Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: a parallel distributed processing account of the Stroop effect. Psychological Review, 97(3), 332–361. doi:10.1037/0033-295X.97.3.332.

    Article  PubMed  Google Scholar 

  • Davidson, D. J., Zacks, R. T., & Williams, C. C. (2003). Stroop interference, practice, and aging. Aging, Neuropsychology, and Cognition, 10(2), 85–98. doi:10.1076/anec.10.2.85.14463.

    Article  Google Scholar 

  • De Houwer, J. (2003). On the role of stimulus-response and stimulus–stimulus compatibility in the Stroop effect. Memory & Cognition, 31(3), 353–359.

    Article  Google Scholar 

  • Devlin, J. T., Jamison, H. L., Gonnerman, L. M., & Matthews, P. M. (2006). The role of the posterior fusiform gyrus in reading. Journal of Cognitive Neuroscience, 18(6), 911–922.

    Article  PubMed  Google Scholar 

  • Dulaney, C. L., & Rogers, W. A. (1994). Mechanisms underlying reduction in Stroop interference with practice for young and old adults. Journal of Experimental Psychology. Learning, Memory, and Cognition, 20(2), 470–484. doi:10.1037/0278-7393.20.2.470.

    Article  PubMed  Google Scholar 

  • Edwards, S., Brice, C., Craig, C., & Penri-Jones, R. (1996). Effects of caffeine, practice, and mode of presentation on Stroop task performance. Pharmacology, Biochemistry and Behavior, 54(2), 309–315. doi:0091-3057(95)02116-7.

    Article  PubMed  Google Scholar 

  • Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8(12), 1784–1790. doi:10.1038/nn1594.

    Article  PubMed  Google Scholar 

  • Ellis, N. R., & Dulaney, C. L. (1991). Further evidence for cognitive inertia of persons with mental retardation. American Journal on Mental Retardation, 95(6), 613–621.

    PubMed  Google Scholar 

  • Ellis, N. R., Woodley-Zanthos, P., Dulaney, C. L., & Palmer, R. L. (1989). Automatic-effortful processing and cognitive inertia in persons with mental retardation. American Journal on Mental Retardation, 93(4), 412–423.

    PubMed  Google Scholar 

  • Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149.

    Article  Google Scholar 

  • Fenske, M. J., Aminoff, E., Gronau, N., & Bar, M. (2006). Top-down facilitation of visual object recognition: object-based and context-based contributions. Progress in Brain Research, 155. doi:10.1016/S0079-6123(06)55001-0.

  • Goldstone, R. L., & Kersten, A. (2003). Concepts and categorization. In A. F. Healy & R. W. Proctor (Eds.), Comprehensive handbook of psychology (pp. 591–621). New York: Wiley.

    Google Scholar 

  • Herd, S. A., Banich, M. T., & O’Reilly, R. C. (2006). Neural mechanisms of cognitive control: an integrative model of Stroop task performance and FMRI data. Journal of Cognitive Neuroscience, 18(1), 22–32. doi:10.1162/089892906775250012.

    Article  PubMed  Google Scholar 

  • Kelley, W. M., Miezin, F. M., McDermott, K. B., Buckner, R. L., Raichle, M. E., Cohen, N. J., Petersen, S. E. (1998). Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding. Neuron, 20, 927–936. doi:doi.org/10.1016/S0896-6273(00)80474-2.

  • Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: cognitive basis for stimulus-response compatibility—a model and taxonomy. Psychological Review, 97(2), 253–270. doi:10.1037/0033-295X.97.2.253.

    Article  PubMed  Google Scholar 

  • MacLeod, C. M. (1991). Half a century of research on the Stroop effect: an integrative review. Psychological Bulletin, 109(2), 163–203. doi:10.1037/0033-2909.109.2.163.

    Article  PubMed  Google Scholar 

  • MacLeod, C. M. (1998). Training on integrated versus separated Stroop tasks: the progression of interference and facilitation. Memory & Cognition, 26(2), 201–211.

    Article  Google Scholar 

  • MacLeod, C. M., & Dunbar, K. (1988). Training and Stroop-like interference: evidence for a continuum of automaticity. Journal of Experimental Psychology. Learning, Memory, and Cognition, 14(1), 126–135.

    Article  PubMed  Google Scholar 

  • Masson, M. E. J., Bub, D. N., Woodward, T. S., & Chan, J. C. K. (2003). Modulation of word-reading processes in task switching. Journal of Experimental Psychology: General, 132(3), 400–418. doi:10.1037//0096-3445.132.3.400.

    Article  Google Scholar 

  • Polk, T. A., Drake, R. M., Jonides, J. J., Smith, M. R., & Smith, E. E. (2008). Attention enhances the neural processing of relevant features and suppresses the processing of irrelevant features in humans: a functional magnetic resonance imaging study of the Stroop task. The Journal of Neuroscience, 28(51), 13786–13792. doi:10.1523/JNEUROSCI.1026-08.2008.

    Article  PubMed  Google Scholar 

  • Polk, T. A., & Farah, M. J. (2002). Functional MRI evidence for an abstract, not perceptual, word-form area. Journal of Experimental Psychology: General, 131(1), 65–72. doi:10.1037//0096-3445.131.1.65.

    Article  Google Scholar 

  • Posner, M. I., & Dehaene, S. (1994). Attentional networks. Trends in Neurosciences, 17(2), 75–79.

    Article  PubMed  Google Scholar 

  • Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In R. L. Solso (Ed.), Information processing and cognition: The Loyola symposium (pp. 55–85). Hillsdale: Erlbaum.

    Google Scholar 

  • Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84(2), 127–190.

    Article  Google Scholar 

  • Shor, R. E., Hatch, R. P., Hudson, L. J., Landrigan, E. T., & Shaffer, H. J. (1972). Effects of practice on a Stroop-like spatial directions task. Journal of Experimental Psychology, 94(2), 168–172.

    Article  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662. doi:10.1037/0096-3445.121.1.15.

    Article  Google Scholar 

  • Treisman, A. M. (1969). Strategies and models of selective attention. Psychological Review, 76(3), 282–299. doi:10.1037/h0027242.

    Article  PubMed  Google Scholar 

  • Treisman, A. M., & Geffen, G. (1967). Selective attention: perception or response? Quarterly Journal of Experimental Psychology, 19, 1–18. doi:10.1080/14640746708400062.

    Article  PubMed  Google Scholar 

  • van Veen, V., Cohen, J. D., Botvinick, M. M., Stenger, V. A., & Carter, C. S. (2001). Anterior cingulate cortex, conflict monitoring, and levels of processing. NeuroImage, 14(6), 1302–1308. doi:10.1006/nimg.2001.0923.

    Article  PubMed  Google Scholar 

  • Verguts, T., & Notebaert, V. (2008). Hebbian learning of cognitive control: dealing with specific and nonspecific adaptation. Psychological Review, 115(2), 518–525.

    Article  PubMed  Google Scholar 

  • Virzi, R. A., & Egeth, H. E. (1985). Toward a translational model of Stroop interference. Memory & Cognition, 13(4), 304–319.

    Article  Google Scholar 

  • Warren, R. E. (1972). Stimulus encoding and memory. Journal of Experimental Psychology, 94(1), 90–100.

    Article  Google Scholar 

  • Waszak, F., Hommel, B., & Allport, A. (2003). Task-switching and long-term promoting: role of episodic stimulus-task bindings in task-shift costs. Cognitive Psychology, 46, 361–413. doi:10.1016/S0010-0285(02)00520-0.

    Article  PubMed  Google Scholar 

  • Zhang, H., Zhang, J., & Kornblum, S. (1999). A parallel distributed processing model of stimulus–stimulus and stimulus–response compatibility. Cognitive Psychology, 38, 386–432.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31170980, 81271477), the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (201107), the New Century Excellent Talents in University (NCET-11-0698), the Fundamental Research Funds for the Central Universities (SWU1009001), and the Key Discipline Fund of National 211 Project (NSKD11006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antao Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Ding, C., Li, H. et al. The influence of attentional control on stimulus processing is category specific in Stroop tasks. Psychological Research 77, 599–610 (2013). https://doi.org/10.1007/s00426-012-0457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-012-0457-5

Keywords

Navigation