Skip to main content
Log in

Suppression of the maize phytoglobin ZmPgb1.1 promotes plant tolerance against Clavibacter nebraskensis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Suppression of the maize phytoglobin ZmPgb1.1 enhances tolerance against Clavibacter nebraskensis by promoting hypersensitive response mechanisms mediated by ethylene and reactive oxygen species.

Abstract

Suppression of the maize phytoglobin, ZmPgb1.1, reduced lesion size and disease severity in leaves following inoculation with Clavibacter nebraskensis, the causal agent of Goss’s bacterial wilt disease of corn. These effects were associated with an increase of the transcriptional levels of ethylene biosynthetic and responsive genes, which resulted in the accumulation of reactive oxygen species (ROS) and TUNEL-positive nuclei in the proximity of the inoculation site. An in vitro system, in which maize cells were treated with induced xylem sap, was employed to define the cause–effect relationship of these events. Phytoglobins (Pgbs) are hemoglobins able to scavenge nitric oxide (NO). Suppression of ZmPgb1.1 elevated the level of NO in cells exposed to the induced xylem sap causing a rise in the transcript levels of ethylene biosynthesis and response genes, as well as ethylene. Accumulation of ethylene in the same cells was sufficient to elevate the amount of reactive oxygen species (ROS), through the activation of the respiratory burst oxidase homologs (Rboh) genes, and trigger programmed cell death (PCD). The sequence of these events was demonstrated by manipulating the content of NO and ethylene in culture through pharmacological treatments. Collectively, our results illustrated that suppression of ZmPgb1.1 evokes tolerance against C. nebraskensis culminating in the execution of PCD, a key step of the hypersensitive response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AOA:

Aminooxyacetic acid

cPTIO:

2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide

ETH:

Ethephon

Pgb:

Phytoglobin

NO:

Nitric oxide

PCD:

Programmed cell death

ROS:

Reactive oxygen species

SNP:

Sodium nitroprusside

References

  • Agarkova IV, Lambrecht PA, Vidaver AK (2011) Genetic diversity and population structure of Clavibacter michiganensis subsp. nebraskensis. Can J Microbiol 57:366–374

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Mbofung GY, Acharya J, Schmidt CL, Robertson AE (2015) Characterization and comparison of Clavibacter michiganensis subsp. nebraskensis strains recovered from epiphytic and symptomatic infections of maize in Iowa. PLoS One 10:e0143553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arthikala MK, Montiel J, Sanchez-Lopez R, Nava N, Cardenas L, Quinto C (2017) Respiratory burst oxidase homolog gene A is crucial for Rhizobium infection and nodule maturation and function in common bean. Front Plant Sci 8:202–206

    Article  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Campbell MT, Proctor CA, Dou Y, Schmitz AJ, Phansak P, Kruger GR, Walia H (2015) Genetic and molecular characterization of submergence response identifies Subtol6 as a major submergence tolerance locus in maize. PLoS One 10:1–25

    Google Scholar 

  • Claflin LE (1999) Goss’s bacterial wilt and blight. In: White DG (ed) Compendium of corn diseases. Am Phytopathol Soc, St. Paul, pp 4–5

    Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  CAS  PubMed  Google Scholar 

  • Derksen H, Rampitsch C, Daayf F (2013) Signaling cross-talk in plant disease resistance. Plant Sci 207:79–87

    Article  CAS  PubMed  Google Scholar 

  • Eichenlaub R, Gartemann K-H, Burger A (2006) Clavibacter michiganensis, a group of Gram-positive phytopathogenic bacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 385–422

    Chapter  Google Scholar 

  • Elhiti M, Hebelstrup KH, Wang A, Li C, Cui Y, Hill RD, Stasolla C (2013) Function of type-2 Arabidopsis hemoglobin in the auxin-mediated formation of embryogenic cells during morphogenesis. Plant J 74:946–958

    Article  CAS  PubMed  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:71–75

    Article  CAS  Google Scholar 

  • Geisler-Lee J, Caldwell C, Gallie DR (2010) Expression of the ethylene biosynthetic machinery in maize roots is regulated in response to hypoxia. J Exp Bot 61:857–871

    Article  CAS  PubMed  Google Scholar 

  • Gross DC, Vidaver AK (1979) Bacteriocins of phytopathogenic Corynebacterium species. Can J Microbiol 25:367–374

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Hebelstrup KH, Mur LA, Igamberdiev AU (2011) Plant hemoglobins: important players at the crossroads between oxygen and nitric oxide. FEBS Lett 585:3843–3849

    Article  CAS  PubMed  Google Scholar 

  • Hebelstrup KH, Hunt P, Dennis E, Jensen SB, Jensen EØ (2006) Hemoglobin is essential for normal growth of Arabidopsis organs. Physiol Plant 127:157–166

    Article  CAS  Google Scholar 

  • Hill RD (2012) Non-symbiotic haemoglobins-what’s happening beyond nitric oxide scavenging? AoB Plants 12:1–13

    Google Scholar 

  • Huang S, Hill RD, Wally OSD, Dionisio G, Ayele BT, Jami SK, Stasolla C (2014) Hemoglobin control of cell survival/death decision regulates in vitro plant embryogenesis. Plant Physiol 1652:810–825

    Article  CAS  Google Scholar 

  • Igamberdiev AU, Seregélyes C, Manac’h N, Hill RD (2004) NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley hemoglobin. Planta 219:95–102

    Article  CAS  PubMed  Google Scholar 

  • Jackson TA, Harveson RM, Vidaver AK (2007) Goss’s bacterial wilt and leaf blight of corn. University of Nebraska-Lincoln, G1675

  • Kapoor K, Mira MM, Ayele BT, Nguyen TN, Hill RD, Stasolla C (2018) Phytoglobins regulate nitric oxide-dependent abscisic acid synthesis and ethylene-induced program cell death in developing maize somatic embryos. Planta 247:1277–1291

    Article  CAS  PubMed  Google Scholar 

  • Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91 phox subunit gene encodes a plasma membrane protein with Ca2 binding motifs. Plant Cell 10:255–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Tambong J, Yuan KX, Chen W, Xu H, Lévesque A, De Boer SH (2018) Re-classification of Clavibacter michiganensis subspecies on the basis of whole-genome and multi-locus sequence analyses. Int J Syst Evol Microbiol 68:234–240

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Zhang Y, Jiang M (2009) Alternative splicing and differential expression of two transcripts of nicotine adenine dinucleotide phosphate oxidase B gene from Zea mays. J Int Plant Biol 51:287–298

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Ishimaru CA, Glazebrook J, Samac DA (2018) Comparative genomic analyses of Clavibacter michiganensis subsp. insidiosus and pathogenicity on Medicago truncatula. Phytopathology 108:172–185

    Article  CAS  PubMed  Google Scholar 

  • Mallowa SO, Mbofung GY, Eggenberger SK, Den Adel RL, Scheilding SR, Robertson AE (2016) Infection of maize by Clavibacter michiganensis subsp. nebraskensis does not require severe wounding. Plant Dis 100:724–731

    Article  PubMed  Google Scholar 

  • Manac’h-Little N, Igamberdiev AU, Hill RD (2005) Hemoglobin expression affects ethylene production in maize cell cultures. Plant Physiol Biochem 43:485–489

    Article  PubMed  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mira MM, Hill RD, Stasolla C (2016a) Phytoglobins improve hypoxic root growth by alleviating apical meristem cell death. Plant Physiol 172:2044–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mira MM, Wally OSD, Elhiti M, El-Shanshory A, Reddy DS, Hill RD, Stasolla C (2016b) Jasmonic acid is a downstream component in the modulation of somatic embryogenesis by Arabidopsis Class 2 phytoglobin. J Exp Bot 67:2231–2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mira MM, Huang S, Kapoor K, Hammond C, Hill RD, Stasolla C (2017) Expression of Arabidopsis class 1 phytoglobin (AtPgb1) delays death and degradation of the root apical meristem during severe PEG-induced water deficit. J Exp Bot 68:5653–5668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mur LAJ, Laarhoven LJ, Harren FJM, Hall MA, Smith AR (2008a) Nitric oxide interacts with salicylate to regulate biphasic ethylene production during the hypersensitive response. Plant Physiol 148:1537–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mur LA, Kenton P, Lloyd AJ, Ougham H, Prats E (2008b) The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59:501–520

    Article  CAS  PubMed  Google Scholar 

  • Mur LAJ, Sivakumaran A, Mandon J, Cristescu SM, Harren FJM, Hebelstrup KH (2012) Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens. J Exp Bot 63:4375–4387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mur LAJ, Prats E, Pierre S, Hall MA, Hebelstrup KH (2013) Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Front Plant Sci 4:1–7

    Google Scholar 

  • Peart JR, Mestre P, Lu R, Malcuit I, Baulcombe DC (2005) NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Curr Biol 15:968–973

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Qu ZL, Zhong NQ, Wang HY, Chen AP, Jian GL, Xia GX (2006) Ectopic expression of the cotton non-symbiotic hemoglobin gene GhHbd1 triggers defense responses and increases disease tolerance in Arabidopsis. Plant Cell Physiol 47:1058–1068

    Article  CAS  PubMed  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster ML (1972) Leaf freckles and wilt, a new corn disease. In: 27th reports from the annual corn and sorghum research conference. Fargo, ND, USA, pp 176–191

  • Seregélyes C, Igamberdiev AU, Maassen A, Hennig J, Dudits D, Hill RD (2004) NO-degradation by alfalfa class 1 hemoglobin (Mhb1): a possible link to PR-1a gene expression in Mhb1-overproducing tobacco plants. FEBS Lett 571:61–66

    Article  PubMed  CAS  Google Scholar 

  • Soliman A, Gulden RH, Tambong JT, Bajracharya P, Adam LR, Xu R, Daayf F (2018) Developed and validated inoculation and disease assessment methods for Goss’s bacterial wilt and leaf blight disease of corn. Crop Protect 112:159–167

    Article  Google Scholar 

  • Spoel SH, Dong X (2008) Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3:348–351

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  CAS  PubMed  Google Scholar 

  • Tambong JT (2017) Comparative genomics of Clavibacter michiganensis subspecies, pathogens of important agricultural crops. PLoS One 12:e0172295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thapa SP, Pattathil S, Hahn MG, Jacques M-A, Gilbertson RL, Coaker G (2017) Genomic analysis of Clavibacter michiganensis reveals insight into virulence strategies and genetic diversity of a gram-positive bacterial pathogen. MPMI 30:786–802

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • van Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P, Hara-Nishimura I, Jones AM, Kawai-Yamada M, Lam E, Mundy J, Mur LAJ, Petersen M, Smertenko A, Taliansky M, Van Breusegem F, Wolpert T, Woltering E, Zhivotovsky B, Bozhkov PV (2011) Morphological classification of plant cell deaths. Cell Death Diff 18:1241–1246

    Article  CAS  Google Scholar 

  • Vidaver AK, Mandel M (1974) Corynebacterium nebraskense, a new, orange-pigmented phytopathogenic species. Int J Syst Bacteriol 24:482–485

    Article  CAS  Google Scholar 

  • Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JD, Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youssef MS, Mira MM, Renault S, Hill RD, Stasolla C (2016) Phytoglobin expression influences soil flooding response of corn plants. Ann Bot 118:919–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaluga J, Stragier P, Baeyen S, Haegeman A, Van Vaerenbergh J, Maes M, De Vos P (2014) Comparative genomic analysis of pathogenic and non-pathogenic Clavibacter strains reveals adaptations to their lifestyle. BMC Genom 15(392):91

    Google Scholar 

Download references

Acknowledgements

This work was supported by a NSERC Discovery Grant to CS. The authors thank the valuable technical assistance of Mr. Durnin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Stasolla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 389 kb)

Supplementary material 2 (XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owusu, V., Mira, M., Soliman, A. et al. Suppression of the maize phytoglobin ZmPgb1.1 promotes plant tolerance against Clavibacter nebraskensis. Planta 250, 1803–1818 (2019). https://doi.org/10.1007/s00425-019-03263-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-019-03263-7

Keywords

Navigation