Skip to main content
Log in

Acquisition and loss of desiccation tolerance in seeds: from experimental model to biological relevance

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Besides being an important model to study desiccation tolerance, the induction of desiccation tolerance in germinated seeds may also play an ecological role in seedling establishment.

Desiccation tolerance (DT) is the ability of certain organisms to survive extreme water losses without accumulation of lethal damage. This was a key feature in the conquering of dry land and is currently found in all taxa including bacteria, fungi, roundworms and plants. Not surprisingly, studies in various fields have been performed to unravel this intriguing phenomenon. In flowering plants, DT is rare in whole plants (vegetative tissues), yet is common in seeds. In this review, we present our current understanding of the evolution of DT in plants. We focus on the acquisition of DT in seeds and the subsequent loss during and after germination by highlighting and comparing research in two model plants Medicago truncatula and Arabidopsis thaliana. Finally, we discuss the ability of seeds to re-establish DT during post-germination, the possible ecological meaning of this phenomenon, and the hypothesis that DT, in combination with dormancy, optimizes seedling establishment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akter K, Kato M, Sato Y, Kaneko Y, Takezawa D (2014) Abscisic acid-induced rearrangement of intracellular structures associated with freezing and desiccation stress tolerance in the liverwort Marchantia polymorpha. J Plant Physiol 171:1334–1343

    CAS  PubMed  Google Scholar 

  • Alpert P (2005) The limits and frontiers of desiccation-tolerant life. Integr Comp Biol 45:685–695

    PubMed  Google Scholar 

  • Alpert P (2006) Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol 209:1575–1584

    PubMed  Google Scholar 

  • Angelovici R, Galili G, Fernie AR, Fait A (2010) Seed desiccation: a bridge between maturation and germination. Trends Plant Sci 15:211–218

    CAS  PubMed  Google Scholar 

  • Barrero JM, Piqueras P, Gonzalez-Guzman M, Serrano R, Rodriguez PL, Ponce MR, Micol JL (2005) A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. J Exp Bot 56:2071–2083

    CAS  PubMed  Google Scholar 

  • Baskin CC, Baskin JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego

    Google Scholar 

  • Baud S, Boutin JP, Miquel M, Lepiniec L, Rochat C (2002) An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol Bioch 40:151–160

    CAS  Google Scholar 

  • Berjak P, Pammenter NW (2008) From Avicennia to Zizania: seed recalcitrance in perspective. Ann Bot 101:213–228

    PubMed Central  PubMed  Google Scholar 

  • Berjak P, Pammenter NW (2013) Implications of the lack of desiccation tolerance in recalcitrant seeds. Front Plant Sci 4:478

    PubMed Central  PubMed  Google Scholar 

  • Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds: physiology of development, germination and dormancy. Springer, New York

    Google Scholar 

  • Bino RJ, de Vries JN, Kraak HL, van Pijlen JG (1992) Flow cytometric determination of nuclear replication stages in tomato seeds during priming and germination. Ann Bot 69:231–236

    Google Scholar 

  • Boubriak I, Dini M, Berjak P, Osborne DJ (2000) Desiccation and survival in the recalcitrant seeds of Avicennia marina: DNA replication, DNA repair and protein synthesis. Seed Sci Res 10:307–315

    CAS  Google Scholar 

  • Boudet J, Buitink J, Hoekstra FA, Rogniaux H, Larre C, Satour P, Leprince O (2006) Comparative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance. Plant Physiol 140:1418–1436

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bouwmeester HJ, Karssen CM (1993) Annual changes in dormancy and germination in seeds of Sisymbrium officinale (L) Scop. New Phytol 124:179–191

    Google Scholar 

  • Bruggink T, van der Toorn P (1995) Induction of desiccation tolerance in germinated seeds. Seed Sci Res 5:1–4

    Google Scholar 

  • Buitink J, Leprince O (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology 48:215–228

    CAS  PubMed  Google Scholar 

  • Buitink J, Leprince O (2008) Intracellular glasses and seed survival in the dry state. C R Biol 331:788–795

    CAS  PubMed  Google Scholar 

  • Buitink J, Vu BL, Satour P, Leprince O (2003) The re-establishment of desiccation tolerance in germinated radicles of Medicago truncatula Gaertn. seeds. Seed Sci Res 13:273–286

    CAS  Google Scholar 

  • Buitink J, Leger JJ, Guisle I, Vu BL, Wuilleme S, Lamirault G, Le Bars A, Le Meur N, Becker A, Kuester H, Leprince O (2006) Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages in Medicago truncatula seeds. Plant J 47:735–750

    CAS  PubMed  Google Scholar 

  • Calahan D, Dunham M, DeSevo C, Koshland DE (2011) Genetic analysis of desiccation tolerance in Saccharomyces cerevisiae. Genetics 189:507–519

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chatelain E, Hundertmark M, Leprince O, Le Gall S, Satour P, Deligny-Penninck S, Rogniaux H, Buitink J (2012) Temporal profiling of the heat-stable proteome during late maturation of Medicago truncatula seeds identifies a restricted subset of late embryogenesis abundant proteins associated with longevity. Plant Cell Environ 35:1440–1455

    CAS  PubMed  Google Scholar 

  • Chater C, Kamisugi Y, Movahedi M, Fleming A, Cuming AC, Gray JE, Beerling DJ (2011) Regulatory mechanism controlling stomatal behavior conserved across 400 million years of land plant evolution. Curr Biol 21:1025–1029

    CAS  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    CAS  PubMed  Google Scholar 

  • Daws MI, Bolton S, Burslem DFRP, Garwood NC, Mullins CE (2007) Loss of desiccation tolerance during germination in neo-tropical pioneer seeds: implications for seed mortality and germination characteristics. Seed Sci Res 17:273–281

    Google Scholar 

  • Dekkers BJW, Smeekens SCM (2007) Sugar and abscisic acid regulation of germination and transition to seedling growth. In: Bradford K, Nonogaki H (eds) Annual Plant Reviews, vol 27., Seed development, dormancy and germination. Blackwell Publishing Ltd, Oxford, pp 305–327

    Google Scholar 

  • Dekkers BJW, Schuurmans JAMJ, Smeekens SCM (2008) Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis. Plant Mol Biol 67:151–167

    PubMed Central  CAS  PubMed  Google Scholar 

  • Delahaie J, Hundertmark M, Bove J, Leprince O, Rogniaux H, Buitink J (2013) LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance. J Exp Bot 64:4559–4573

    PubMed Central  CAS  PubMed  Google Scholar 

  • Delmas F, Sankaranarayanan S, Deb S, Widdup E, Bournonville C, Bollier N, Northey JGB, McCourt P, Samuel MA (2013) ABI3 controls embryo degreening through Mendel’s I locus. Proc Natl Acad Sci USA 110:E3888–E3894

    PubMed Central  CAS  PubMed  Google Scholar 

  • Derkx MPM, Karssen CM (1994) Are seasonal dormancy patterns in Arabidopsis thaliana regulated by changes in seed sensitivity to light, nitrate and gibberellin? Ann Bot 73:129–136

    CAS  Google Scholar 

  • Dinakar C, Bartels D (2013) Desiccation tolerance in resurrection plants: new insights from transcriptome, proteome and metabolome analysis. Front Plant Sci 4:482

    PubMed Central  PubMed  Google Scholar 

  • Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie AR, Galili G (2006) Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol 142:839–854

    PubMed Central  CAS  PubMed  Google Scholar 

  • Faria JMR, Buitink J, van Lammeren AAM, Hilhorst HWM (2005) Changes in DNA and microtubules during loss and re-establishment of desiccation tolerance in germinating Medicago truncatula seeds. J Exp Bot 56:2119–2130

    CAS  PubMed  Google Scholar 

  • Farrant JM (2000) A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecol 151:29–39

    Google Scholar 

  • Farrant JM, Moore JP (2011) Programming desiccation-tolerance: from plants to seeds to resurrection plants. Curr Opin Plant Biol 14:340–345

    CAS  PubMed  Google Scholar 

  • Farrant JM, Brandt W, Lindsey GG (2007) An overview of mechanisms of desiccation tolerance in selected angiosperm resurrection plants. Plant Stress 1:72–84

    Google Scholar 

  • Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, Cambridge

    Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    CAS  PubMed  Google Scholar 

  • Finch-Savage WE, Cadman CS, Toorop PE, Lynn JR, Hilhorst HW (2007) Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. Plant J 51:60–78

    CAS  PubMed  Google Scholar 

  • Finkelstein RR (1994) Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. Plant J 5:765–771

    Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    PubMed Central  CAS  PubMed  Google Scholar 

  • Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10:1043–1054

    PubMed Central  CAS  PubMed  Google Scholar 

  • Footitt S, Douterelo-Soler I, Clay H, Finch-Savage WE (2011) Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone signaling pathways. Proc Natl Acad Sci USA 108:20236–20241

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gaff DF (1971) Desiccation-tolerant flowering plants in Southern Africa. Science 174:1033–1034

    CAS  PubMed  Google Scholar 

  • Gaff DF, Oliver M (2013) The evolution of desiccation tolerance in angiosperm plants: a rare yet common phenomenon. Funct Plant Biol 40:315–328

    Google Scholar 

  • Garwe D, Thomson JA, Mundree SG (2006) XvSAP1 from Xerophyta viscosa improves osmotic-, salinity- and high-temperature-stress tolerance in Arabidopsis. Biotechnol J 1:1137–1146

    CAS  PubMed  Google Scholar 

  • Gechev TS, Dinakar C, Benina M, Toneva V, Bartels D (2012) Molecular mechanisms of desiccation tolerance in resurrection plants. Cell Mol Life Sci 69:3175–3186

    CAS  PubMed  Google Scholar 

  • Gibson SI, Laby RJ, Kim DG (2001) The sugar-insensitive1 (sis1) mutant of Arabidopsis is allelic to ctr1. Biochem Biophys Res Commun 280:196–203

    CAS  PubMed  Google Scholar 

  • Gilroy S, Jones DL (2000) Through form to function: root hair development and nutrient uptake. Trends Plant Sci 5:56–60

    CAS  PubMed  Google Scholar 

  • Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:1251–1261

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hauser F, Waadtl R, Schroeder JI (2011) Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol 21:R346–R355

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hilhorst HWM (2007) Definitions and Hypotheses of Seed Dormancy. In: Bradford K, Nonogaki H (eds) Annual Plant Reviews, vol 27., Seed development, dormancy and germination. Blackwell Publishing Ltd, Oxford, pp 50–71

    Google Scholar 

  • Hilhorst HWM, Karssen CM (1988) Dual effect of light on the gibberellin-stimulated and nitrate-stimulated seed-germination of Sisymbrium officinale and Arabidopsis thaliana. Plant Physiol 86:591–597

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    CAS  PubMed  Google Scholar 

  • Illing N, Denby KJ, Collett H, Shen A, Farrant JM (2005) The signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues. Integr Comp Biol 45:771–787

    CAS  PubMed  Google Scholar 

  • Jia HY, Suzuki M, McCarty DR (2014) Regulation of the seed to seedling developmental phase transition by the LAFL and VAL transcription factor networks. Wires Dev Biol 3:135–145

    CAS  Google Scholar 

  • Keilin D (1959) The Leeuwenhoek Lecture—the problem of anabiosis or latent life—history and current concept. Proc R Soc Ser B-Bio 150:149–191

    CAS  Google Scholar 

  • Kermode AR, Finch-Savage WE (2002) Desiccation sensitivity in orthodox and recalcitrant seeds in relation to development. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CAB International, Wallingford, pp 149–184

    Google Scholar 

  • Khandelwal A, Cho SH, Marella H, Sakata Y, Perroud PF, Pan A, Quatrano RS (2010) Role of ABA and ABI3 in desiccation tolerance. Science 327:546–546

    CAS  PubMed  Google Scholar 

  • Kim DH, Yamaguchi S, Lim S, Oh E, Park J, Hanada A, Kamiya Y, Choi G (2008) SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. Plant Cell 20:1260–1277

    PubMed Central  CAS  PubMed  Google Scholar 

  • Komatsu K, Suzuki N, Kuwamura M, Nishikawa Y, Nakatani M, Ohtawa H, Takezawa D, Seki M, Tanaka M, Taji T, Hayashi T, Sakata Y (2013) Group A PP2Cs evolved in land plants as key regulators of intrinsic desiccation tolerance. Nature Commun 4:2219

    Google Scholar 

  • Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic-acid insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383

    CAS  Google Scholar 

  • Koornneef M, Hanhart CJ, Hilhorst HW, Karssen CM (1989) In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana. Plant Physiol 90:463–469

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kranner I, Birtic S (2005) A modulating role for antioxidants in desiccation tolerance. Integr Comp Biol 45:734–740

    CAS  PubMed  Google Scholar 

  • Kumar D, Singh P, Yusuf MA, Upadhyaya CP, Roy SD, Hohn T, Sarin NB (2013) The Xerophyta viscosa aldose reductase (ALDRXV4) confers enhanced drought and salinity tolerance to transgenic tobacco plants by scavenging methylglyoxal and reducing the membrane damage. Mol Biotechnol 54:292–303

    CAS  PubMed  Google Scholar 

  • Leprince O, Buitink J (2010) Desiccation tolerance: from genomics to the field. Plant Sci 179:554–564

    CAS  Google Scholar 

  • Leprince O, van Aelst AC, Pritchard HW, Murphy DJ (1998) Oleosins prevent oil-body coalescence during seed imbibition as suggested by a low-temperature scanning electron microscope study of desiccation-tolerant and -sensitive oilseeds. Planta 204:109–119

    CAS  Google Scholar 

  • Leprince O, Harren FJM, Buitink J, Alberda M, Hoekstra FA (2000) Metabolic dysfunction and unabated respiration precede the loss of membrane integrity during dehydration of germinating radicles. Plant Physiol 122:597–608

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leprince O, Satour P, Vu BL, Buitink J (2004) The role of sugars and hexose phosphorylation in regulating the re-establishment of desiccation tolerance in germinated radicles of Cucumis sativa and Medicago truncatula. Physiol Plant 122:200–209

    CAS  Google Scholar 

  • Lin TP, Yen WL, Chien CT (1998) Disappearance of desiccation tolerance of imbibed crop seeds is not associated with the decline of oligosaccharides. J Exp Bot 49:1203–1212

    CAS  Google Scholar 

  • Linkies A, Graeber K, Knight C, Leubner-Metzger G (2010) The evolution of seeds. New Phytol 186:817–831

    CAS  PubMed  Google Scholar 

  • Loi P, Iuso D, Czernik M, Zacchini F, Ptak G (2013) Towards storage of cells and gametes in dry form. Trends Biotechnol 31:688–695

    CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Chua NH (2000) A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol 41:541–547

    CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand S, Chua NH (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the AB15 transcription factor in Arabidopsis. Proc Natl Acad Sci USA 98:4782–4787

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand B, McLachlin DT, Chait BT, Chua NH (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32:317–328

    CAS  PubMed  Google Scholar 

  • Lotan T, Ohto M, Yee KM, West MA, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205

    CAS  PubMed  Google Scholar 

  • Luerssen H, Kirik V, Herrmann P, Misera S (1998) FUSCA3 encodes a protein with a conserved VP1/AB13-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J 15:755–764

    CAS  PubMed  Google Scholar 

  • Lüttge U, Beck E, Bartels D (2011) Plant desiccation tolerance. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Maia J, Dekkers BJ, Provart NJ, Ligterink W, Hilhorst HWM (2011) The re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds and its associated transcriptome. PLoS One 6:e29123

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maia J, Dekkers BJW, Dolle MJ, Ligterink W, Hilhorst HWM (2014) Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds. New Phytol 203:81–93

    CAS  PubMed  Google Scholar 

  • McCarty DR, Carson CB, Stinard PS, Robertson DS (1989) Molecular analysis of Viviparous 1—an abscisic acid-insensitive mutant of maize. Plant Cell 1:523–532

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mönke G, Seifert M, Keilwagen J, Mohr M, Grosse I, Hahnel U, Junker A, Weisshaar B, Conrad U, Baumlein H, Altschmied L (2012) Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Res 40:8240–8254

    PubMed Central  PubMed  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    CAS  PubMed  Google Scholar 

  • Moore JP, Vicre-Gibouin M, Farrant JM, Driouich A (2008) Adaptations of higher plant cell walls to water loss: drought vs desiccation. Physiol Plant 134:237–245

    CAS  PubMed  Google Scholar 

  • Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363

    CAS  PubMed  Google Scholar 

  • Nambara E, Naito S, McCourt P (1992) A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele. Plant J 2:435–441

    CAS  Google Scholar 

  • Nambara E, Keith K, McCourt P, Naito S (1995) A regulatory role for the ABI3 gene in the establishment of embryo maturation in Arabidopsis thaliana. Development 121:629–636

    CAS  Google Scholar 

  • Oh E, Kim J, Park E, Kim JI, Kang C, Choi G (2004) PIL5, a phytochrome-interacting basic helix–loop–helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana. Plant Cell 16:3045–3058

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung WI, Choi G (2006) Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J 47:124–139

    CAS  PubMed  Google Scholar 

  • Oliver MJ, Tuba Z, Mishler BD (2000) The evolution of vegetative desiccation tolerance in land plants. Plant Ecol 151:85–100

    Google Scholar 

  • Oliver MJ, Velten J, Mishler BD (2005) Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integr Comp Biol 45:788–799

    PubMed  Google Scholar 

  • Ooms JJJ, Leon-Kloosterziel KM, Bartels D, Koornneef M, Karssen CM (1993) Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana (A comparative study using abscisic acid-insensitive abi3 mutants). Plant Physiol 102:1185–1191

    PubMed Central  CAS  PubMed  Google Scholar 

  • Osborne DJ, Boubriak II (1994) DNA and desiccation tolerance. Seed Sci Res 4:175–185

    CAS  Google Scholar 

  • Pammenter NW, Berjak P (1999) A review of recalcitrant seed physiology in relation to desiccation tolerance mechanisms. Seed Sci Res 9:13–37

    Google Scholar 

  • Perruc E, Kinoshita N, Lopez-Molina L (2007) The role of chromatin-remodeling factor PKL in balancing osmotic stress responses during Arabidopsis seed germination. Plant J 52:927–936

    CAS  PubMed  Google Scholar 

  • Phillips J, Artsaenko O, Fiedler U, Horstmann C, Mock HP, Muntz K, Conrad U (1997) Seed-specific immunomodulation of abscisic acid activity induces a developmental switch. EMBO J 16:4489–4496

    PubMed Central  CAS  PubMed  Google Scholar 

  • Porembski S (2011) Evolution, diversity, and habitats of poikilohydrous vascular plants. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance. Springer-Verlag, Berlin

    Google Scholar 

  • Potts M, Slaughter SM, Hunneke FU, Garst JF, Helm RF (2005) Desiccation tolerance of prokaryotes: application of principles to human cells. Integr Comp Biol 45:800–809

    CAS  PubMed  Google Scholar 

  • Proctor MCF, Pence VC (2002) Vegetative tissues: Bryophytes vascular resurrection plants and vegetative propagules. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CAB International, Wallingford, pp 207–238

    Google Scholar 

  • Proctor MCF, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD (2007) Desiccation-tolerance in bryophytes: a review. Bryologist 110:595–621

    CAS  Google Scholar 

  • Roberts EH (1973) Predicting the storage life of seeds. Seed Sci Technol 1:499–514

    Google Scholar 

  • Rubio S, Rodrigues A, Saez A, Dizon MB, Galle A, Kim TH, Santiago J, Flexas J, Schroeder JI, Rodriguez PL (2009) Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiol 150:1345–1355

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ruszala EM, Beerling DJ, Franks PJ, Chater C, Casson SA, Gray JE, Hetherington AM (2011) Land plants acquired active stomatal control early in their evolutionary history. Curr Biol 21:1030–1035

    CAS  PubMed  Google Scholar 

  • Saracco F, Bino RJ, Bergervoet JHW, Lanteri S (1995) Influence of priming-induced nuclear replication activity on storability of pepper (Capsicum annuum L) seed. Seed Sci Res 5:25–29

    Google Scholar 

  • Sargent JA, Mandi SS, Osborne DJ (1981) The loss of desiccation tolerance during germination—an ultrastructural and biochemical approach. Protoplasma 105:225–239

    Google Scholar 

  • Satpathy GR, Torok Z, Bali R, Dwyre DM, Little E, Walker NJ, Tablin F, Crowe JH, Tsvetkova NM (2004) Loading red blood cells with trehalose: a step towards biostabilization. Cryobiology 49:123–136

    CAS  PubMed  Google Scholar 

  • Scoffoni C, Vuong C, Diep S, Cochard H, Sack L (2014) Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance. Plant Physiol 164:1772–1788

    PubMed Central  CAS  PubMed  Google Scholar 

  • Silvertown J (1980) Leaf-canopy-induced seed dormancy in a grassland flora. New Phytol 85:109–118

    Google Scholar 

  • Steeves TA (1983) The evolution and biological significance of seeds. Can J Bot 61:3550–3560

    Google Scholar 

  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sugliani M, Rajjou L, Clerkx EJ, Koornneef M, Soppe WJ (2009) Natural modifiers of seed longevity in the Arabidopsis mutants abscisic acid insensitive3-5 (abi3-5) and leafy cotyledon1-3 (lec1-3). New Phytol 184:898–908

    CAS  PubMed  Google Scholar 

  • Tanaka M, Kikuchi A, Kamada H (2008) The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol 146:149–161

    PubMed Central  CAS  PubMed  Google Scholar 

  • Terrasson E, Buitink J, Righetti K, Vu BL, Pelletier S, Zinsmeister J, Lalanne D, Leprince O (2013) An emerging picture of the seed desiccome: confirmed regulators and newcomers identified using transcriptome comparison. Front Plant Sci 4:497

    PubMed Central  PubMed  Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Die Naturwissenschaften 94:791–812

    CAS  PubMed  Google Scholar 

  • Tweddle JC, Dickie JB, Baskin CC, Baskin JM (2003) Ecological aspects of seed desiccation sensitivity. J Ecol 91:294–304

    Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839

    PubMed Central  CAS  PubMed  Google Scholar 

  • van Zanten M, Koini MA, Geyer R, Liu Y, Brambilla V, Bartels D, Koornneef M, Fransz P, Soppe WJ (2011) Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation. Proc Natl Acad Sci USA 108:20219–20224

    PubMed Central  PubMed  Google Scholar 

  • van Zanten M, Zoll C, Wang Z, Philipp C, Carles A, Li Y, Kornet NG, Liu Y, Soppe WJ (2014) HISTONE DEACETYLASE 9 represses seedling traits in Arabidopsis thaliana dry seeds. Plant J 80:475–488

    PubMed  Google Scholar 

  • Verdier J, Lalanne D, Pelletier S, Torres-Jerez I, Righetti K, Bandyopadhyay K, Leprince O, Chatelain E, Vu BL, Gouzy J, Gamas P, Udvardi MK, Buitink J (2013) A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. Plant Physiol 163:757–774

    PubMed Central  CAS  PubMed  Google Scholar 

  • Verslues PE, Juenger TE (2011) Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Curr Opin Plant Biol 14:240–245

    CAS  PubMed  Google Scholar 

  • Vertucci CW, Farrant JM (1995) Acquisition and loss of desiccation tolerance. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker, New York, pp 237–271

    Google Scholar 

  • Vieira CV, da Silva EAA, de Alvarenga AA, de Castro EM, Toorop PE (2010) Stress-associated factors increase after desiccation of germinated seeds of Tabebuia impetiginosa Mart. Plant Growth Regul 62:257–263

    CAS  Google Scholar 

  • Waterworth WM, Masnavi G, Bhardwaj RM, Jiang Q, Bray CM, West CE (2010) A plant DNA ligase is an important determinant of seed longevity. Plant J 63:848–860

    CAS  PubMed  Google Scholar 

  • Welch AZ, Gibney PA, Botstein D, Koshland DE (2013) TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae. Mol Biol Cell 24:115–128

    PubMed Central  CAS  PubMed  Google Scholar 

  • Willis CG, Baskin CC, Baskin JM, Auld JR, Venable DL, Cavender-Bares J, Donohue K, Rubio de Casas R, Group NEGW (2014) The evolution of seed dormancy: environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytol 203:300–309

    PubMed  Google Scholar 

  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biology 21C:133–139

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Netherlands Organization for Scientific Research (NWO), the Dutch Technology Foundation, which is the applied science division of the Netherlands Organization for Scientific Research and the Technology Program of the Ministry of Economic Affairs; by the ‘Coordenação de Aperfeiçoamento de Pessoal de Nível Superior’ (CAPES, Brazil); and by the ‘Conselho Nacional de Desenvolvimento Científico e Tecnológico’ (CNPq, Brazil).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bas J. W. Dekkers.

Additional information

B. J. W. Dekkers, M. C. D. Costa and J. Maia contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dekkers, B.J.W., Costa, M.C.D., Maia, J. et al. Acquisition and loss of desiccation tolerance in seeds: from experimental model to biological relevance. Planta 241, 563–577 (2015). https://doi.org/10.1007/s00425-014-2240-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2240-x

Keywords

Navigation