Skip to main content
Log in

Quantitative evaluation of IAA conjugate pools in Arabidopsis thaliana

  • Short Communication
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

This work has demonstrated that the major method of estimating the amount of unknown IAA conjugates—base hydrolysis—can be significantly complicated by chemical artifacts such as glucobrassicin or protein degradation.

The concept of ‘bound auxin’ traces its origin back to more than 80 years ago and has driven research on the sources and forms of these plant hormones since. Indeed, analytical studies have demonstrated that the majority of cellular auxin is conjugated to simple sugars, cyclitols, glycans, amino acids, and other biomolecules. A number of studies have confirmed the enzymatic systems responsible for the synthesis and hydrolysis of a number of such conjugates in Arabidopsis thaliana and some of these compounds have been identified in situ. However, the amount of indole-3-acetic acid (IAA) released upon treating Arabidopsis tissue extracts with base, a commonly employed technique for estimating the amount of IAA conjugates, greatly exceeded the summation of all the IAA conjugates known individually to be present in Arabidopsis. This discrepancy has remained as an unsolved question. In this study, however, we found that a significant portion of the IAA found after base treatment could be attributed to chemical conversions other than conjugate hydrolysis. Specifically, we showed that glucobrassicin conversion, previously thought to occur at insignificant levels, actually accounted for the majority of solvent soluble IAA released and that proteinaceous tryptophan degradation accounted for a large portion of solvent insoluble IAA. These studies clearly demonstrated the limits associated with using a harsh technique like base hydrolysis in determining IAA conjugates and support using more direct approaches such as mass spectrometry-based strategies for unambiguous characterizations of the total complement of IAA conjugates in new plant materials under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

4-Cl-IAA:

4-Chloro-indole-3-acetic acid

CV:

Column volumes

DTT:

Dithiothreitol

HEPES:

2-[4-(2-Hydroxyethyl)piperazin-1-yl]ethanesulfonic acid

IAA:

Indole-3-acetic acid

IAN:

Indole-3-acetonitrile

IA-Ala:

Indole-3-acetyl alanine

IA-Asp:

Indole-3-acetyl aspartate

IA-Glu:

Indole-3-acetyl glutamate

IA-Leu:

Indole-3-acetyl leucine

IA-Trp:

Indole-3-acetyl tryptophan

MES:

2-(N-Morpholino)ethanesulfonic acid

OxIAA:

Oxindole-3-acetic acid

TCA:

Trichloroacetic acid

TFA:

Trifluoroacetic acid

References

  • Andreae WA, Good NE (1955) The formation of indoleacetylaspartic acid in pea seedlings. Plant Physiol 30:380–382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bajguz A, Piotrowska A (2009) Conjugates of auxin and cytokinin. Phytochemistry 70:957–969

    Article  CAS  PubMed  Google Scholar 

  • Bandurski R, Ehmann A (1986) GC-MS methods for the quantitative determination and structural characterization of esters of indole-3-acetic acid and myo-inositol. In: Linskens H, Jakson J (eds) Gas chromatography/Mass spectrometry. Springer, Berlin, pp 189–213

    Chapter  Google Scholar 

  • Bandurski RS, Piskornik Z (1973) An indole-3-acetic acid ester of a cellulosic glucan. In: Loewus F (ed) Biogenesis of plant cell wall polysaccharides. Academic Press, New York, pp 297–314

    Chapter  Google Scholar 

  • Bandurski RS, Schulze A (1974) Concentrations of indole-3-acetic acid and its esters in Avena and Zea. Plant Physiol 54:257–262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bandurski RS, Schulze A (1977) Concentration of indole-3-acetic acid and its derivatives in plants. Plant Physiol 60:211–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bandurski RS, Ueda M, Nicholls PB (1970) Esters of indole-3-acetic acid and myo-inositol. Ann NY Acad Sci 165:655–667

    Google Scholar 

  • Bandurski RS, Schulze A, Cohen JD (1977) Photo-regulation of the ratio of ester to free indole-3-acetic acid. Biochem Biophys Res Commun 79:1219–1223

    Article  CAS  PubMed  Google Scholar 

  • Barkawi LS, Tam YY, Tillman JA, Pederson B, Calio J, Al-Amier H, Emerick M, Normanly J, Cohen JD (2008) A high-throughput method for the quantitative analysis of indole-3-acetic acid and other auxins from plant tissue. Anal Biochem 372:177–188

    Article  CAS  PubMed  Google Scholar 

  • Barratt NM, Dong W, Gage DA, Magnus V, Town CD (1999) Metabolism of exogenous auxin by Arabidopsis thaliana: identification of the conjugate N-(indol-3-ylacetyl)-glutamine and initiation of a mutant screen. Physiol Plant 105:207–217

    Article  CAS  Google Scholar 

  • Baud S, Boutin J, Miquel M, Lepiniec L, Rochat C (2002) An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem 40:151–160

    Article  CAS  Google Scholar 

  • Bialek K, Cohen JD (1986) Isolation and partial characterization of the major amide-linked conjugate of indole-3-acetic acid from Phaseolus vulgaris L. Plant Physiol 80:99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bialek K, Cohen JD (1989) Quantitation of indoleacetic acid conjugates in bean seeds by direct tissue hydrolysis. Plant Physiol 90:398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481

    Article  CAS  PubMed  Google Scholar 

  • Burow M, Zhang ZY, Ober JA, Lambrix VM, Wittstock U, Gershenzon J, Kliebenstein DJ (2008) ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis. Phytochemistry 69:663–671

    Article  CAS  PubMed  Google Scholar 

  • Chevolleau S, Gasc N, Rollin P, Tulliez J (1997) Enzymatic, chemical, and thermal breakdown of 3H-labeled glucobrassicin, the parent indole glucosinolate. J Agric Food Chem 45:4290–4296

    Article  CAS  Google Scholar 

  • Chevolleau S, Debrauwer L, Boyer G, Tulliez J (2002) Isolation and structure elucidation of a new thermal breakdown product of glucobrassicin, the parent indole glucosinolate. J Agric Food Chem 50:5185–5190

    Article  CAS  PubMed  Google Scholar 

  • Chisnell JR, Bandurski RS (1988) Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L. Plant Physiol 86:79–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cholodny N (1935) Über das Keimungshormon von Gramineen. Planta 23:289–312

    Article  CAS  Google Scholar 

  • Cohen JD, Bandurski RS (1978) The bound auxins: protection of indole-3-acetic acid from peroxidase-catalyzed oxidation. Planta 139:203–208

    Article  CAS  PubMed  Google Scholar 

  • Cohen JD, Bandurski RS (1982) Chemistry and physiology of the bound auxins. Annu Rev Plant Physiol 33:403–430

    Article  CAS  Google Scholar 

  • Delatorre P, Silva-Filho JC, Rocha BAM, Santi-Gadelha T, da Nóbrega RB, Gadelha CAA, do Nascimento KS, Nagano CS, Sampaio AH, Cavada BS (2013) Interactions between indole-3-acetic acid (IAA) with a lectin from Canavalia maritima seeds reveal a new function for lectins in plant physiology. Biochimie 95:1697–1703

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S (2008) Activation of the indole-3-acetic acid–amidosynthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basal immunity in rice. Plant Cell 20:228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felker P (1976) A gas-liquid chromatographic-isotope dilution analysis of cysteine, histidine, and tryptophan in acid-hydrolyzed protein. Anal Biochem 76:192–213

    Article  CAS  PubMed  Google Scholar 

  • González-Lamothe R, El Oirdi M, Brisson N, Bouarab K (2012) The conjugated auxin indole-3-acetic acid-aspartic acid promotes plant disease development. Plant Cell 24:762–777

    Article  PubMed Central  PubMed  Google Scholar 

  • Gordon SA (1946) Auxin-protein complexes of the wheat grain. Am J Bot 33:160–169

    Article  CAS  PubMed  Google Scholar 

  • Gordon SA, Wildman SG (1943) The conversion of tryptophan to a plant growth substance by conditions of mild alkalinity. J Biol Chem 147:389–398

    CAS  Google Scholar 

  • Hall PJ (1980) Indole-3-acetyl- myo-inositol in kernels of Oryza sativa. Phytochemistry 19:2121–2123

    Article  CAS  Google Scholar 

  • Hamilton RH, Bandurski RS, Grigsby BH (1961) Isolation of indole-3-acetic acid from corn kernels & etiolated corn seedlings. Plant Physiol 36:354–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ilic N, Normanly J, Cohen JD (1996) Quantification of free plus conjugated indoleacetic acid in Arabidopsis requires correction for the nonenzymatic conversion of indolic nitriles. Plant Physiol 111:781–788

    Article  CAS  Google Scholar 

  • Kai K, Horita J, Wakasa K, Miyagawa H (2007) Three oxidative metabolites of indole-3-acetic acid from Arabidopsis thaliana. Phytochemistry 68:1651–1663

    Article  CAS  PubMed  Google Scholar 

  • Kögl F, Haagen-Smit A, Erxleben H (1934) Über ein neues Auxin (“Hetero-Auxin”) aus Harn. Z Physiol Chem 228:90–103

    Article  Google Scholar 

  • Komoszynski M, Bandurski RS (1986) Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays. Plant Physiol 80:961–964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kowalczyk M, Sandberg G (2001) Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol 127:1845–1853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Labarca C, Nicholls P, Bandurski RS (1965) A partial characterization of indoleacetylinositols from Zea mays. Biochem Biophys Res Commun 20:641–646

    Article  CAS  PubMed  Google Scholar 

  • Leverone LA, Kossenjans W, Jayasimihulu K, Caruso JL (1991) Evidence of zein-bound indoleacetic acid using gas chromatography-selected ion monitoring-mass spectrometry analysis and immunogold labeling. Plant Physiol 96:1070–1075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Hegeman AD, Gardner G, Cohen JD (2012) Protocol: high-throughput and quantitative assays of auxin and auxin precursors from minute tissue samples. Plant Methods 8:31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ljung K, Östin A, Lioussanne L, Sandberg G (2001) Developmental regulation of indole-3-acetic acid turnover in Scots pine seedlings. Plant Physiol 125:464–475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 50:309–332

    Article  Google Scholar 

  • Mansfield S, Briarty L (1992) Cotyledon cell development in Arabidopsis thaliana during reserve deposition. Can J Bot 70:151–164

    Article  Google Scholar 

  • Nowacki J, Bandurski RS (1980) Myo-inositol esters of indole-3-acetic acid as seed auxin precursors of Zea mays L. Plant Physiol 65:422–427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Östin A, Kowalyczk M, Bhalerao RP, Sandberg G (1998) Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol 118:285–296

    Article  PubMed Central  PubMed  Google Scholar 

  • Park S, Cohen JD, Slovin JP (2006) Strawberry fruit protein with a novel indole-acyl modification. Planta 224:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Park S, Ozga JA, Cohen JD, Reinecke DM (2010) Evidence of 4-Cl-IAA and IAA bound to proteins in pea fruit and seeds. J Plant Growth Regul 29:184–193

    Article  CAS  Google Scholar 

  • Percival FW, Bandurski RS (1976) Esters of indole-3-acetic acid from Avena seeds. Plant Physiol 58:60–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schocken V (1949) The genesis of auxin during the decomposition of proteins. Arch Biochem 23:198–204

    CAS  PubMed  Google Scholar 

  • Seidel C, Walz A, Park S, Cohen J, Ludwig-Müller J (2006) Indole-3-acetic acid protein conjugates: novel players in auxin homeostasis. Plant Biol 8:340–345

    Article  CAS  PubMed  Google Scholar 

  • Slominski BA, Campbell LD (1989) Indoleacetonitriles—thermal degradation products of indole glucosinolates in commercial rapeseed (Brassica napus) meal. J Sci Food Agric 47:75–84

    Article  CAS  Google Scholar 

  • Slovin JP, Bandurski RS, Cohen JD (1999) Auxin. In: Hooykaas P, Hall M, Libbenga K (eds) Biochemistry and molecular biology of plant hormones. Elsevier, Amesterdam, pp 115–140

    Chapter  Google Scholar 

  • Staswick PE (2009) The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol 150:1310–1321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tam YY, Slovin JP, Cohen JD (1995) Selection and characterization of α-methyltryptophan-resistant lines of Lemna gibba showing a rapid rate of indole-3-acetic acid turnover. Plant Physiol 107:77–85

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tam YY, Epstein E, Normanly J (2000) Characterization of auxin conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose. Plant Physiol 123:589–595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thimann KV (1935) On the plant growth hormone produced by Rhizopus suinus. J Biol Chem 109:279–291

    CAS  Google Scholar 

  • Tsurumi S, Wada S (1986) Dioxindole-3-acetic acid conjugates formation from indole-3-acetylaspartic acid in Vicia seedlings. Plant Cell Physiol 27:1513–1522

    CAS  Google Scholar 

  • Ueda M, Bandurski RS (1969) A quantitative estimation of alkali-labile indole-3-acetic acid compounds in dormant and germinating maize kernels. Plant Physiol 44:1175–1181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ueda M, Ehmann A, Bandurski RS (1970) Gas-liquid chromatographic analysis of indole-3-acetic acid myoinositol esters in maize kernels. Plant Physiol 46:715–719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • US Department of Agriculture, Agricultural Research Service (2013) USDA National nutrient database for standard reference, release 26. Nutrient Data Laboratory Home Page. http://www.ars.usda.gov/ba/bhnrc/ndl. Accessed 7 Oct 2014

  • Vlitos AJ, Meudt W (1953) The role of auxin in plant flowering. I. A quantitative method based on paper chromatography for the determination of indole compounds & IAA in plant tissue. Contri Boyce Thompson Inst 17:197–202

    CAS  Google Scholar 

  • Walz A, Park S, Slovin JP, Ludwig-Müller J, Momonoki YS, Cohen JD (2002) A gene encoding a protein modified by the phytohormone indoleacetic acid. Proc Natl Acad Sci USA 99:1718–1723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walz A, Seidel C, Rusak G, Park S, Cohen JD, Ludwig-Müller J (2008) Heterologous expression of IAP1, a seed protein from bean modified by indole-3-acetic acid, in Arabidopsis thaliana and Medicago truncatula. Planta 227:1047–1061

    Article  CAS  PubMed  Google Scholar 

  • Yu P, Hegeman AD, Cohen JD (2014) A facile means for the identification of indolic compounds from plant tissues. Plant J 79:1065–1075

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. William Gray (University of Minnesota) for help with FPLC, Dr. Seijin Park (Colorado State University) for advice on IAA conjugates, Dr. Xing Liu (California Institute of Technology) for sharing her expertise in IAA analysis, Dr. LeeAnn Higgins and Mr. Todd Markowski (both from the University of Minnesota) for help with protein identification. P. Y. was partially supported by a University of Minnesota Monsanto Fellowship, a University of Minnesota Department of Horticultural Science Plant Development Scholarship and by funds from the National Science Foundation (IOS-1238812). The research was funded by the National Science Foundation Plant Genome Research Program (IOS-1238812), the Minnesota Agricultural Experiment Station, and the Gordon and Margaret Bailey Endowment for Environmental Horticulture.

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Yu or Jerry D. Cohen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, P., Lor, P., Ludwig-Müller, J. et al. Quantitative evaluation of IAA conjugate pools in Arabidopsis thaliana . Planta 241, 539–548 (2015). https://doi.org/10.1007/s00425-014-2206-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2206-z

Keywords

Navigation