Skip to main content
Log in

Gene expression analysis in microdissected shoot meristems of Brassica napus microspore-derived embryos with altered SHOOTMERISTEMLESS levels

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Altered expression of Brassica napus (Bn) SHOOTMERISTEMLESS (STM) affects the morphology and behaviour of microspore-derived embryos (MDEs). While down-regulation of BnSTM repressed the formation of the shoot meristem (SAM) and reduced the number of Brassica MDEs able to regenerate viable plants at germination, over-expression of BnSTM enhanced the structure of the SAM and improved regeneration frequency. Within dissected SAMs, the induction of BnSTM up-regulated the expression of many transcription factors (TFs) some of which directly involved in the formation of the meristem, i.e. CUP-SHAPED COTYLEDON1 and WUSCHEL, and regulatory components of the antioxidant response, hormone signalling, and cell wall synthesis and modification. Opposite expression patterns for some of these genes were observed in the SAMs of MDEs down-regulating BnSTM. Altered expression of BnSTM affected transcription of cell wall and lignin biosynthetic genes. The expression of PHENYLALANINE AMMONIA LYASE2, CINNAMATE 4-4HYDROXYLASE, and CINNAMYL ALCOHOL DEHYDROGENASE were repressed in SAMs over-expressing BnSTM. Since lignin formation is a feature of irreversible cell differentiation, these results suggest that one way in which BnSTM promotes indeterminate cell fate may be by preventing the expression of components of biochemical pathways involved in the accumulation of lignin in the meristematic cells. Overall, these studies provide evidence for a novel function of BnSTM in enhancing the quality of in vitro produced meristems, and propose that this gene can be used as a potential target to improve regeneration of cultured embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CLV:

CLAVATA

MDE:

Microspore-derived embryo

SAM:

Shoot apical meristem

STM:

SHOOTMERISTEMLESS

TFs:

Transcription factors

WUS:

WUSCHEL

References

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857

    Article  PubMed  CAS  Google Scholar 

  • Bao F, Azhakanandam S, Franks RG (2010) SEUSS and SEUSS-LIKE transcriptional adaptors regulate floral and embryonic development in Arabidopsis. Plant Physiol 152:821–836

    Article  PubMed  CAS  Google Scholar 

  • Barton MK, Poethig RS (1993) Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119:823–831

    Google Scholar 

  • Belmonte M, Ambrose SJ, Ross ARS, Abrams SR, Stasolla C (2006) Improved development of microspore derived embryo cultures of Brassica napus cv Topaz following changes in glutathione metabolism. Physiol Plant 127:690–700

    Article  CAS  Google Scholar 

  • Belmonte M, Elhiti M, Ashihara H, Stasolla C (2010) Brassinolide-improved development of Brassica napus microspore-derived embryos is associated with increased activities of purine and pyrimidine salvage pathways. Planta 233:95–107

    Article  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Bowman J, Eshed K (2000) Formation and maintenance of the shoot apical meristem. Trends Plant Sci 5:34–45

    Article  Google Scholar 

  • Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2001) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617–619

    Article  Google Scholar 

  • Brooks L, Strable J, Zhang X, Ohtsu K, Zhou R, Sarkar A, Hargreaves S, Elshire RJ, Eudy D, Pawlowska T, Ware D, Janick-Buckner D, Buckner B, Timmermans MCP, Schnable PS, Nettleton D, Scanlon MJ (2009) Microdissection of shoot meristem functional domains. PLoS Genet 5:e1000476

    Article  PubMed  Google Scholar 

  • Cairns NG, Pasternak M, Wachter A, Cobbett CS, Meyer AJ (2006) Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol 141:446–455

    Article  PubMed  CAS  Google Scholar 

  • Clark SE, Jacobsen SE, Levin JZ, Meyerowitz EM (1996) The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development 122:1567–1575

    PubMed  CAS  Google Scholar 

  • Elhiti M, Tahir M, Gulden RH, Khamiss K, Stasolla C (2010) Modulation of embryo-forming capacity in culture through the expression of Brassica genes involved in the regulation of the shoot apical meristem. J Exp Bot 61:4069–4085

    Article  PubMed  CAS  Google Scholar 

  • Elhiti M, Yang C, Chan A, Durnin DC, Belmonte M, Ayele BT, Tahir M, Stasolla C (2012) Altered seed oil and glucosinolate levels in transgenic plants over-expressing the Brassica napus SHOOTMERISTEMLESS gene. J Exp Bot 63:4447–4461

    Article  PubMed  CAS  Google Scholar 

  • Endrizzi K, Moussian B, Haecker A, Levin JZ, Laux T (1996) The SHOOTMERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem gene WUSCHEL and ZWILLE. Plant J 10:967–979

    Article  PubMed  CAS  Google Scholar 

  • Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914

    Article  PubMed  CAS  Google Scholar 

  • Foyer C (2005) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Gallois JL, Woodward C, Reddy GV, Sablowski R (2002) Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 129:3207–3217

    PubMed  CAS  Google Scholar 

  • Hay A, Tsiantis M (2006) The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsute. Nat Genet 38:942–947

    Article  PubMed  CAS  Google Scholar 

  • Hay A, Tsiantis M (2009) A KNOX family TALE. Curr Opin Plant Biol 12:593–598

    Article  PubMed  CAS  Google Scholar 

  • Hsu S-C, Belmonte MF, Harada JJ, Inoue K (2010) Indispensable roles of plastids in Arabidopsis thaliana embryogenesis. Curr Genomics 11:338–349

    Article  PubMed  CAS  Google Scholar 

  • Jasinski S, Piazza P, Craft J, Hayo A, Woolley L, Rien L, Phillips A, Hedden P, Tsiantis M (2005) KNOX action in Arabidopsis is mediated by the coordinated regulation of cytokinin and gibberellin activities. Curr Biol 15:1560–1565

    Article  PubMed  CAS  Google Scholar 

  • Joosen R, Cordewener J, Supena EDJ, Vorst O, Lammers M, Maliepaard C, Zeilmaker T, Miki B, America T, Custers J, Boutilier K (2007) Comparative transcriptome and proteome analysis identifies pathways and markers associated with the establishment of rapeseed microspore-derived embryo development. Plant Physiol 144:1–18

    Article  Google Scholar 

  • Kieffer M, Stern Y, Cook H, Cerici E, Maulbetsch C, Laux T, Davies B (2006) Analysis of the transcription factor WUSCHEL and its functional homologue in Antirrhinum reveals a potential mechanism for their roles in meristem maintenance. Plant Cell 18:560–573

    Article  PubMed  CAS  Google Scholar 

  • Kong L, Yeung EC (1992) Development of white spruce somatic embryos: II. Continual shoot meristem development during germination. In Vitro Cell Dev Biol 28P:125–131

    Google Scholar 

  • Laux T, Mayer KFX, Berger J, Jurgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96

    PubMed  CAS  Google Scholar 

  • Lenhard M, Jürgens G, Laux T (2002) The WUSCHEL and SHOOTMERISTEMLESS genes fulfill complementary roles in Arabidopsis shoot apical meristem regulation. Development 129:3195–3206

    PubMed  CAS  Google Scholar 

  • Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z Pflanzenphysiol 105:427–434

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-Delta Delta C(T)). Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Long JA, Ohno CS, Smith ZR, Meyerowitz EM (2006) TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312:1520–1523

    Article  PubMed  CAS  Google Scholar 

  • Lu P, Porat R, Nadeau JA, O’Neil SD (1996) Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes. Plant Cell 8:2155–2168

    PubMed  CAS  Google Scholar 

  • Malik MR, Wang F, Dirpaul JM, Zhou N, Polowick PI, Ferrie AMR, Krochko JE (2007) Transcript profiling and identification of molecular markers for early embryogenesis in Brassica napus. Plant Physiol 144:134–154

    Article  PubMed  CAS  Google Scholar 

  • Mansfield SG, Briarty LG (1991) Early embryogenesis in Arabidopsis thaliana. II The developing embryo. Can J Bot 69:461–476

    Article  Google Scholar 

  • Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815

    Article  PubMed  CAS  Google Scholar 

  • Mele G, Ori N, Sato Y, Hake S (2003) The knotted1-like homeobox gene BREVIPEDICELLUS regulates cell differentiation by modulating metabolic pathways. Genes Dev 17:2088–2093

    Article  PubMed  CAS  Google Scholar 

  • Ochado I, Gonzalez-Reig S, Ripoll J–J, Vera A, Martinez-Laborda A (2008) Alteration of the shoot radial pattern in Arabidopsis thaliana by a gain-of-function allele of the class III HD-Zip gene INCURVATA4. Int J Dev Biol 52:953–961

    Article  Google Scholar 

  • Ohtsu K, Smith M, Emrich S, Borsuk LA, Zhou R, Chen T, Zhang X, Timmermans MCP, Beck J, Buckner DJ, Nettleton D, Scanlon MJ (2007) Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.). Plant J 52:391–404

    Article  PubMed  CAS  Google Scholar 

  • Parker G, Schofield R, Sundberg B, Turner S (2003) Isolation of COV1, a gene involved in the regulation of vascular patterning in the stem of Arabidopsis. Development 130:2139–2148

    Article  PubMed  CAS  Google Scholar 

  • Ramesar-Fortner NS, Yeung EC (2006) Physiological influences in the development and function of the shoot apical meristem of microspore-derived embryos of B. napus. Can J Bot 84:371–383

    Article  CAS  Google Scholar 

  • Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA (2006) TM4 microarray software suite. Methods Enzymol 411:134–193

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Fernández R, Fricker M, Corben LB, White NS, Sheard N, Leaver CJ, Van Montagu M, Inzé D, May MJ (1997) Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc Natl Acad Sci USA 94:2745–2750

    Article  PubMed  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Meyer KF, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between CLAVATA and WUSCHEL genes. Cell 100:635–644

    Article  PubMed  CAS  Google Scholar 

  • Scofield S, Murray J (2006) KNOX gene function in plant stem niches. Plant Mol Biol 60:929–946

    Article  PubMed  CAS  Google Scholar 

  • Spinelli SV, Martin AP, Viola IL, Gonzalez DH, Palatnik JF (2011) A mechanistic link between STM and CUC1 during Arabidopsis development. Plant Physiol 156:1894–1904

    Article  PubMed  CAS  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastr Res 26:31–43

    Article  CAS  Google Scholar 

  • Stasolla C, Belmonte M, Tahir M, Elhiti M, Joosen R, Maliepaard C, Sharpe A, Boutilier K (2008) Buthionine sulfoximine (BSO)-mediated improvement in in vitro cultured embryo quality is associated with major changes in transcripts involved with ascorbate metabolism, meristem development and embryo maturation. Planta 228:255–272

    Article  PubMed  CAS  Google Scholar 

  • Takada S, Hibara K, Tasaka M (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128:1127–1135

    PubMed  CAS  Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inzé D, May MJ, Sung ZR (2000) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–110

    PubMed  CAS  Google Scholar 

  • Vollbrecht E, Reiser L, Hake S (2000) Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development 127:3161–3172

    PubMed  CAS  Google Scholar 

  • West MAL, Harada JJ (1993) Embryogenesis in higher plants: an overview. Plant Cell 5:1361–1369

    PubMed  Google Scholar 

  • Yadav RK, Girke T, Pasala S, Xie S, Reddy GV (2009) Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci USA 106:4941–4946

    Article  PubMed  CAS  Google Scholar 

  • Yao QA, Simion E, William M, Krochko J, Kasha KJ (1997) Biolistic transformation of haploid isolated microspores of barley Hordeum vulgare L. Genome 40:570–581

    Article  PubMed  CAS  Google Scholar 

  • Ye J, Fang L, Zheng HK, Zhang Y, Chen J, Zhang ZJ, Wang J, Li ST, Li RQ, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:293–297

    Article  Google Scholar 

  • Yeung EC (1999) The use of histology in the study of plant tissue culture systems - some practical comments. In Vitro Cell Dev Biol 35:137–143

    Article  Google Scholar 

  • Yeung EC (2002) The canola microspore-derived embryo as a model system to study developmental processes in plants. J Plant Biol 45:119–133

    Article  Google Scholar 

  • Yeung E, Rahman MH, Thorpe TA (1996) Comparative development of zygotic and microspore-derived embryos in Brassica napus L. cv Topas. I. Histodifferentiation. Int J Plant Sci 157:27–39

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a NSERC Discovery Grant to C.S. and M.F.B. We would also like to thank Dr. John Harada and members of his laboratory (UC Davis) for the use of the Leica laser-capture microscope system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Stasolla.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elhiti, M., Wally, O.S.D., Belmonte, M.F. et al. Gene expression analysis in microdissected shoot meristems of Brassica napus microspore-derived embryos with altered SHOOTMERISTEMLESS levels. Planta 237, 1065–1082 (2013). https://doi.org/10.1007/s00425-012-1814-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1814-8

Keywords

Navigation