Skip to main content
Log in

Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L.

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Sequestration mechanisms that prevent high concentrations of free metal ions from persisting in metabolically active compartments of cells are thought to be central in tolerance of plants to high levels of divalent cation metals. Expression of AtCAX2 or AtCAX4, which encode divalent cation/proton antiporters, in Nicotiana tabacum cv. KY14 results in enhanced Cd- and Zn-selective transport into root tonoplast vesicles, and enhanced Cd accumulation in roots of plants exposed to moderate, 0.02 μM Cd in solution culture (Korenkov et al. in Planta 225:403–411, 2007). Here we investigated effects of expressing AtCAX2 and AtCAX4 in the same lines on tolerance to growth with near-incipient toxicity levels of Cd, Zn and Mn. Less growth inhibition (higher tolerance) to all three metals was observed in 35S::AtCAX2 and FS3::AtCAX4 expressing plants. Consistent with the tolerance observed for Cd was the finding that while root tonoplast vesicle proton pump activities of control and FS3AtCAX4 expressing plants grown in 3 μM Cd were similarly reduced, and vesicle proton leak was enhanced, root tonoplast vesicle antiporter activity of these plants remained elevated above that in controls. We suggest that CAX antiporters, unlike tonoplast proton pump and membrane integrity, are not negatively impacted by high Cd, and that supplementation of tonoplast with AtCAX compensates somewhat for reduced tonoplast proton pump and proton leak, and thereby results in sufficient vacuolar Cd sequestration to provide higher tolerance. Results are consistent with the view that CAX2 and CAX4 antiporters of tonoplast play a role in tolerance to high, toxic levels of Cd, Zn, and Mn in tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

35S:

Cauliflower mosaic virus gene promoter

FS3:

Sub genomic promoter from figwort mosaic virus

References

  • Alloway BJ (1990) Cadmium In: Alloway BJ (ed) Heavy metals in soils. Blackie and Wiley, Somerset, NJ, pp 101–260

    Google Scholar 

  • Astolfi S, Zuchi S, Chiani A, Passera C (2003) In vivo and in vitro effects of Cd on H+ATPase activity of plasma membrane vesicles from oat roots. J Plant Physiol 160:387–393

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya S, Dey N, Maiti I B (2002) Analysis of cis-sequence of subgenomic transcript promoter from the Figwort mosaic virus and comparison of promoter activity with the cauliflower mosaic virus promoters in monocot and dicot cells. Virus Res 90:47–62

    Article  PubMed  Google Scholar 

  • Bernard C, Roosens N, Czernic P, Lebrun M, Verbruggen N (2004) A novel CPx-ATPase from the Cd hyperaccumulator Thlaspi caerulescens. FEBS Lett 569:140–148

    Article  PubMed  CAS  Google Scholar 

  • Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel MH, Masclaux-Daubresse C (2004) Cd toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol 45:1681–1693

    Article  PubMed  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  PubMed  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    Article  PubMed  CAS  Google Scholar 

  • Hartwig A (2001) Zinc finger proteins as potential targets for toxic metal ions: differential effects on structure and function. Antioxid Redox Signal 3:625–634

    Article  PubMed  CAS  Google Scholar 

  • Hirschi KD (1999) Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell 11:2113–2112

    Article  PubMed  CAS  Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133

    Article  PubMed  CAS  Google Scholar 

  • Herak-Kramberger CM, Brown D, Sabolic I (1998) Cadmium inhibits vacuolar H+ATPase and endocytosis in rat kidney cortex. Kidney Int 53:1713–1726

    Article  PubMed  CAS  Google Scholar 

  • Hussain D, Haydon MJ Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential Zn homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Brand MD (1994) Localization of the sites of action of Cd on oxidative phosphorylation in potato tuber mitochondria using top-down elasticity analysis. Eur J Biochem 225:897–906

    Article  Google Scholar 

  • Korenkov V, Shepherd RW, Wagner GJ (2002) The use of reconstitution and inhibition/ion interaction assays to distinguish between Ca2+/H+ and Cd2+/H+ antiporter activities of oat and tobacco vesicles. Physiol Plant 116:359–367

    Article  CAS  Google Scholar 

  • Korenkov V, Park S, Cheng NH, Sreevidya C, Lachmansingh J, Morris J, Hirschi K, Wagner GJ (2007) Enhanced Cd-selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers. Planta 225:403–411

    Article  CAS  Google Scholar 

  • Kramer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353

    Article  PubMed  CAS  Google Scholar 

  • Lugon-Moulin N, Zhang M, Gadani F, Rossi L, Koller D, Krauss M, Wagner G J (2004) Critical review of the science and options for reducing cadmium in tobacco (Nicotiana Tabacum L.) and other plants. Adv Agron 83:111–180

    CAS  Google Scholar 

  • Maeshima M (1991) H+-translocating inorganic pyrophosphatase of plant vacuoles. Eur J Biochem 196:11–17

    Article  PubMed  CAS  Google Scholar 

  • Martinoia E, Maeshima M, Neuhas HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102

    Article  PubMed  CAS  Google Scholar 

  • Mills RF, Francini A, Ferreira da Rocha PSC, Baccarini PJ, Aylett M, Krijger GC, Williams LE (2005) The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBs Lett 579:783–791

    Article  PubMed  CAS  Google Scholar 

  • Ow DW, Wood KV, DeLuca M, deWet JR, Helinski DR, Howell SH (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234:856–859

    Article  PubMed  CAS  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: Cd permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    Article  PubMed  CAS  Google Scholar 

  • Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Plant Physiol 136:3814–3823

    Article  PubMed  CAS  Google Scholar 

  • Qu LJ, Zhu YX (2006) Transcription factor families in Arabidopsis: major progress and outstanding issues for future research. Curr Opin Plant Bio 9:544–549

    Article  CAS  Google Scholar 

  • Salt DE, Wagner GJ (1993) Cadmium transport across tonoplast of vesicles from oat roots. J Biol Chem 268:12297–12302

    PubMed  CAS  Google Scholar 

  • Sanita diToppi L, Gabrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  CAS  Google Scholar 

  • Shigaki T, Hirschi KD (2006) Diverse functions and molecular properties emerging for CAX cation/H+ exchangers in plants. Plant Biol 8:419–429

    Article  PubMed  CAS  Google Scholar 

  • Shigaki T, Barkla BJ, Miranda-Vergara MC, Zaho J, Pantoja O, Hirschi KD (2005) Identification of a crucial histidine involved in metal transport activity in the Arabidopsis cation/H exchanger-CAX1. J Biol Chem 280:30136–30142

    Article  PubMed  CAS  Google Scholar 

  • Vallee BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem 41:91–128

    Article  PubMed  CAS  Google Scholar 

  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of Zn and Cd and plant metal tolerance. FEBS Lett 576:306–312

    Article  PubMed  CAS  Google Scholar 

  • Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–212

    Article  CAS  Google Scholar 

  • Williams LE, Mills RF (2005) P1B-ATPases- an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502

    Article  PubMed  CAS  Google Scholar 

  • Woolhouse HW (1983) Toxicity and tolerance in the responses of plants to heavy metals. Encycl Plant Physiol New Ser 12C:245–300

    CAS  Google Scholar 

  • Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Philip Morris USA for financial support and assistance with some of the ion analysis. We are indebted to Dr. Indu Maiti for his generous gift of the FS3 promoter. Partially supported by NIH grant 0344350 to K.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George J. Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korenkov, V., Hirschi, K., Crutchfield, J.D. et al. Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L.. Planta 226, 1379–1387 (2007). https://doi.org/10.1007/s00425-007-0577-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0577-0

Keywords

Navigation