Skip to main content
Log in

Laser microdissection and cryogenic nuclear magnetic resonance spectroscopy: an alliance for cell type-specific metabolite profiling

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

An Erratum to this article was published on 14 November 2006

Abstract

Laser microdissection was used as a tool to harvest secretory cavities (SC) from leaves of Dilatris pillansii Barker (Haemodoraceae) and from leaves and flowers of herbarium specimens of Dilatris corymbosa Berg. and Dilatris viscosa L. Cryogenic 1H NMR spectroscopy and HPLC analysis of microdissected samples indicated specific accumulation of methoxyphenylphenalenones in the SC. The structures of two novel and a known natural product in the secretory tissue were confirmed by comparison with authentic compounds isolated from rhizomes and roots from which further phenylphenalenones and phenylphenalenone glucosides were isolated and identified by spectroscopic methods. How it will be possible to use the LMD technique to localize natural products in specific plant cell populations is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

LMD:

Laser microdissection

NMR:

Nuclear magnetic resonance

SC:

Secretory cavities

References

  • Asano T, Masumura T, Kusano H, Kikuchi S, Kurita A, Shimada H, Kadowaki K (2002) Construction of a specialized cDNA library from plant cells isolated by laser capture microdissection: toward comprehensive analysis of the genes expressed in the rice phloem. Plant J 32:401–408

    Article  PubMed  CAS  Google Scholar 

  • Barker WF (1940) The genus Dilatris Berg. with a description of a new species. J S Afr Bot 6:147–164

    Google Scholar 

  • Benedict CR, Martin GS, Liu J, Puckhaber L, Magill CW (2004) Terpenoid aldehyde formation and lysigenous gland storage sites in cotton: variant with mature glands but suppressed levels of terpenoid aldehydes. Phytochemistry 65:1351–1359

    Article  PubMed  CAS  Google Scholar 

  • Cooke R, Edwards JM (1980) Naturally occurring phenalenones and related compounds. Prog Chem Org Nat Prod 40:153–190

    Google Scholar 

  • Dora G, Xie X-Q, Edwards JM (1993) Two novel phenalenones from Dilatris viscosa. J Nat Prod 56:2029–2033

    Article  CAS  Google Scholar 

  • Ecklon CF (1827) Topographisches Verzeichnis der Pflanzensammlung von C.F. Ecklon. Reise-Verein Esslingen, Esslingen

    Google Scholar 

  • Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Lotta LA (1996) Laser capture microdissection. Science 274:998–1001

    Article  PubMed  CAS  Google Scholar 

  • Fahn A (1988) Secretory tissues in vascular plants. New Phytol 31:37–75

    Google Scholar 

  • Gershenzon J, McCaskill D, Rajaonarivony JIM, Mihaliak C, Karp F, Croteau R (1992) Isolation of secretory cells from plant glandular trichomes and their use in biosynthetic studies of monoterpenes and other gland products. Anal Biochem 200:130–138

    Article  PubMed  CAS  Google Scholar 

  • Hegnauer R (1963) Chemotaxonomie der Pflanzen, vol. 2, (Monocotyledoneae). Birkhäuser, Basel

  • Heilmeyer M, Lack HW (2006) Florilegium Imperiale. Prestel, München

    Google Scholar 

  • Hölscher D, Schneider B (2000) Phenalenones from Strelitzia reginae. J Nat Prod 63:1027–1028

    Article  PubMed  Google Scholar 

  • Hölscher D, Schneider B (2005) The biosynthesis of 8-phenylphenalenones from Eichhornia crassipes involves a putative aryl migration step. Phytochemistry 66:59–64

    Article  PubMed  Google Scholar 

  • Hölscher D, Williams DC, Wildung MR, Croteau RB (2003) A cDNA clone for 3-carene synthase from Salvia stenophylla. Phytochemistry 62:1081–1086

    Article  Google Scholar 

  • Kehr J (2003) Single cell technology. Curr Opin Plant Biol 6:617–621

    Article  PubMed  CAS  Google Scholar 

  • Kovacs H, Moskau D, Spraul M (2005) Cryogenically cooled probes—a leap in NMR technology. Prog Nucl Magn Reson Spectrosc 46:131–155

    Article  CAS  Google Scholar 

  • Li S-H, Schneider B, Gershenzon J (2006) Microchemical analysis of laser-microdissected stone cells of Norway spruce by cryogenic nuclear magnetic resonance spectroscopy. Planta (in press)

  • Luis JG, Fletcher WQ, Echeverri F, Grillo TA, Perales A, Gonzalez JA (1995) Intermediates with biosynthetic implications in de novo production of phenyl-phenalenone-type phytoalexins by Musa acuminata. Revised structure of emenolone. Tetrahedron 51:4117–4130

    Article  CAS  Google Scholar 

  • Meimberg H, Thalhammer S, Brachmann A, Muller B, Eichacker LA, Heckl WM, Heubl G (2003) Selection of chloroplasts by laser microbeam microdissection for single-chloroplast PCR. Biotechniques 34:1238–1243

    PubMed  CAS  Google Scholar 

  • Millar JG (1998) Rapid and simple isolation of zingiberene from ginger essential oil. J Nat Prod 61:1025–1026

    Article  PubMed  CAS  Google Scholar 

  • Nakazono M, Qiu F, Borsuk LA, Schnable PS (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissue of maize. Plant Cell 15:583–596

    Article  PubMed  CAS  Google Scholar 

  • Opitz S, Schnitzler J-P, Hause B, Schneider B (2003) Histochemical analysis of phenylphenalenone-related compounds in Xiphidium caeruleum (Haemodoraceae). Planta 216:881–889

    PubMed  CAS  Google Scholar 

  • Petry R, Schmitt M, Popp J (2003) Raman spectroscopy—a prospective tool in the life sciences. ChemPhysChem 4:14–30

    Article  PubMed  CAS  Google Scholar 

  • Schad M, Mungur R, Fiehn O, Kehr J (2005) Metabolic profiling of laser microdissected vascular bundles of Arabidopsis thaliana. Plant Methods 1:2

    Article  PubMed  Google Scholar 

  • Schneider B, Paetz C, Hölscher D, Opitz S (2005) HPLC-NMR for tissue-specific analysis of phenylphenalenone-related compounds in Xiphidium caeruleum (Haemodoraceae). J Magn Reson 43:724–728

    Article  CAS  Google Scholar 

  • Schulze R (1893) Beiträge zur vergleichenden Anatomie der Liliaceen, Haemodoraceen, Hypoxidioideen und Velloziaceen. Engler’s Bot Jahrb 17:295–394

    Google Scholar 

  • Simpson MG (1990) Phylogeny and classification of the Haemodoraceae. Ann MO Bot Gard 77:722–784

    Article  Google Scholar 

  • Turner G (1999) A brief history of the lysigenous gland hypothesis. Bot Rev 65:76–88

    Google Scholar 

  • Weckwerth W, Wenzel K, Fiehn O (2004) Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 4:78–83

    Article  PubMed  CAS  Google Scholar 

  • Wolkenstein K, Gross JH, Falk H, Scholer HF (2006) Preservation of hypericin and related polycyclic quinone pigments in fossil crinoids. Proc R Soc Lond B—Biol Sci 273:451–456

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Tamara Krügel, Jena (Germany), for raising the plants from seed, D. Veit for constructing special slides for LMD and Emily Wheeler for proofreading. We thank A. Svatoš for recording mass spectra, A. Seeling for IR analysis, F. von Eggeling and Bettina Schimmel for the introduction to LMD, G. Turner, Pullman (USA) and Heike Heklau, Halle/S. (Germany), for helpful discussion about secretory cavities, H.-J. Zündorf and H. Manitz for discussions and providing herbarium material (Herbarium Haussknecht (JE), Friedrich Schiller University) and D. Heckel for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Schneider.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00425-006-0434-6

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, B., Hölscher, D. Laser microdissection and cryogenic nuclear magnetic resonance spectroscopy: an alliance for cell type-specific metabolite profiling. Planta 225, 763–770 (2007). https://doi.org/10.1007/s00425-006-0404-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0404-z

Keywords

Navigation