Skip to main content
Log in

Genetic and transgenic perturbations of carbon reserve production in Arabidopsis seeds reveal metabolic interactions of biochemical pathways

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The biosynthesis of seed oil and starch both depend on the supply of carbon from the maternal plant. The biochemical interactions between these two pathways are not fully understood. In the Arabidopsis mutant shrunken seed 1 (sse1)/pex16, a reduced rate of fatty acid synthesis leads to starch accumulation. To further understand the metabolic impact of the decrease in oil synthesis, we compared soluble metabolites in sse1 and wild type (WT) seeds. Sugars, sugar phosphates, alcohols, pyruvate, and many other organic acids accumulated in sse1 seeds as a likely consequence of the reduced carbon demand for lipid synthesis. The enlarged pool size of hexose-P, the metabolites at the crossroad of sugar metabolism, glycolysis, and starch synthesis, was likely a direct cause of the increased flow into starch. Downstream of glycolysis, more carbon entered the TCA cycle as an alternative to the fatty acid pathway, causing the total amount of TCA cycle intermediates to rise while moving the steady state of the cycle away from fumarate. To convert the excess carbon metabolites into starch, we introduced the Escherichia coli starch synthetic enzyme ADP-glucose pyrophosphorylase (AGPase) into sse1 seeds. Expression of AGPase enhanced net starch biosynthesis in the mutant, resulting in starch levels that reached 37% of seed weight. However, further increases above this level were not achieved and most of the carbon intermediates remained high in comparison with the WT, indicating that additional mechanisms limit starch deposition in Arabidopsis seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ballicora MA, Iglesias AA, Preiss J (2004) ADP-glucose pyrophosphorylase: a regulatory enzyme for plant starch synthesis. Photosynth Res 79:1–24

    Article  PubMed  CAS  Google Scholar 

  • Cernac A, Benning C (2004) Wrinkled1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40:575–585

    Article  PubMed  CAS  Google Scholar 

  • Cross JM, Clancy M, Shaw JR, Greene TW, Schmidt RR, Okita TW, Hannah LC (2004) Both subunits of ADP-glucose pyrophosphorylase are regulatory. Plant Physiol 135:137–144

    Article  PubMed  CAS  Google Scholar 

  • Dickinson DB, Preiss J (1969) ADP-glucose pyrophosphorylase from maize endosperm. Arch Biochem Biophys 130:119–128

    Article  PubMed  CAS  Google Scholar 

  • Downing WE, Mauxion F, Fauvarque M-O, Reviron M-P, de Vienne D, Vartanian N, Giraudat J (1992) A Brassica napus transcript encoding a protein related to the Kunitz protease inhibitor family accumulates upon water stress in leaves, not seeds. Plant J 2:685–693

    Article  PubMed  CAS  Google Scholar 

  • Emes MJ, Bowsher CG, Hedley C, Burrell MM, Scrase-Field ES, Tetlow IJ (2003) Starch synthesis and carbon partitioning in developing endosperm. J Exp Bot 54:569–575

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000a) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadropole mass spectrometry. Anal Chem 72:3573–3580

    Article  CAS  Google Scholar 

  • Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000b) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161

    Article  CAS  Google Scholar 

  • Focks N, Benning C (1998) Wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118:91–101

    Article  PubMed  CAS  Google Scholar 

  • Geigenberger P, Kolbe A, Tiessen A (2005) Redox regulation of carbon storage and partitioning in response to light and sugars. J Exp Bot 56:1469–1479

    Article  PubMed  CAS  Google Scholar 

  • Gibon Y, Vigeolas H, Tiessen A, Geigenberger P, Stitt M (2002) Sensitive and high throughput metabolite assays for inorganic pyrophosphate, ADPGlc, nucleotide phosphates, and glycolytic intermediates based on a novel enzymic cycling system. Plant J 30:221–235

    Article  PubMed  CAS  Google Scholar 

  • Gibon Y, Blaesing OE, Hannemann J, Carillo P, Hohne M, Hendriks JH, Palacios N, Cross J, Selbig J, Stitt M (2004) A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16:3304–3325

    Article  PubMed  CAS  Google Scholar 

  • Ghosh HP, Preiss J (1966) Adenosine diphosphate glucose pyrophosphorylase. A regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. J Biol Chem 241:4491–4504

    PubMed  CAS  Google Scholar 

  • Ghosh HP, Meyer C, Remy E, Peterson D, Preiss J (1992) Cloning, expression, and nucleotide sequence of glgC gene from an allosteric mutant of Escherichia coli B. Arch Biochem Biophys 296: 122–128

    Article  PubMed  CAS  Google Scholar 

  • Giroux MJ, Shaw J, Barry G, Cobb BG, Greene T, Okita T, Hannah LC (1996) A single mutation that increases maize seed weight. Proc Natl Acad Sci USA 93:5824–5829

    Article  PubMed  CAS  Google Scholar 

  • James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222

    Article  PubMed  CAS  Google Scholar 

  • Kleczkowski LA, Villand P, Preiss J, Olsen OA (1993a) Kinetic mechanism and regulation of ADP-glucose pyrophosphorylase from barley (Hordeum vulgare) leaves. J Biol Chem 268:6228–6233

    CAS  Google Scholar 

  • Kleczkowski LA, Villand P, Luthi E, Olsen OA, Preiss J (1993b) Insensitivity of barley endosperm ADP-glucose pyrophosphorylase to 3-phosphoglycerate and orthophosphate regulation. Plant Physiol 101:179–186

    Article  CAS  Google Scholar 

  • Kleczkowski LA (1999) A phosphoglycerate to inorganic phosphate ratio is the major factor in controlling starch levels in chloroplasts via ADP-glucose pyrophosphorylase regulation. FEBS Lett 448:153–156

    Article  PubMed  CAS  Google Scholar 

  • Krebbers E, Seurinck J, Cashmore AR, Timko MP (1988) Four genes in two diverged subfamilies encode the ribulose-1,5-biphosphate carboxylase small subunit polypeptides of Arabidopsis thaliana. Plant Mol Biol 11:745–759

    Article  CAS  Google Scholar 

  • Lee YM, Kumar A, Preiss J (1987) Amino acid sequence of an Escherichia coli ADP-glucose synthetase allosteric mutant as deduced from the DNA sequence of the glgC gene. Nucleic Acids Res 15:10603

    PubMed  CAS  Google Scholar 

  • Lin Y, Sun L, Nguyen L, Rachubinski RA, Goodman HM (1999) The Pex16p homolog SSE1 and storage organelle formation in Arabidopsis seeds. Science 284:328–330

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Cluette-Brown JE, Goodman HM (2004) The peroxisome deficient Arabidopsis mutant sse1 exhibits impaired fatty acid synthesis. Plant Physiol 135:814–827

    Article  PubMed  CAS  Google Scholar 

  • Mansfield SG, Briarty LG (1992) Cotyledon cell development in Arabidopsis thaliana during reserve deposition. Can J Bot 70:151–164

    Google Scholar 

  • Norton G, Harris JF (1975) Compositional changes in developing rape seed (Brassica napas L.). Planta 123:163–174

    Article  CAS  Google Scholar 

  • Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J (1994) Regulation of gene expression programs during Arabidopsis seed development: Role of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6:1567–1582

    Article  PubMed  CAS  Google Scholar 

  • Plant AL, van Rooijen GJ, Anderson CP, Moloney MM (1994) Regulation of an Arabidopsis oleosin gene promoter in transgenic Brassica napus. Plant Mol Biol 25:193–205

    Article  PubMed  CAS  Google Scholar 

  • Periappuram C, Steinhauer L, Barton DL, Taylor DC, Chatson B, Zou J (2000) The plastidic phosphoglucomutase from Arabidopsis. A reversible enzyme reaction with an important role in metabolic control. Plant Physiol 122:1193–1199

    Article  PubMed  Google Scholar 

  • Preiss J, Shen L, Greenberg E, Genter N (1966) Biosynthesis of bacterial glycogen. IV. Activation and inhibition of the adenosine diphosphate glucose pyrophosphorylase of Escherichia coli B. Biochemistry 5:1833–1845

    Article  PubMed  CAS  Google Scholar 

  • Preiss J (1984) Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol 38:419–458

    Article  PubMed  CAS  Google Scholar 

  • Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23:131–142

    Article  PubMed  CAS  Google Scholar 

  • Salamone PR, Kavakli IH, Slattery CJ, Okita TW (2002) Directed molecular evolution of ADP-glucose pyrophosphorilase. Proc Natl Acad Sci USA 99:1070–1075

    Article  PubMed  CAS  Google Scholar 

  • Sikka VK, Choi S, Kavakli IH, Sakulsingharoj C, Gupta S, Ito H, Okita TW (2001) Subcellular compartmentation and allosteric regulation of the rice endosperm ADP-glucose pyrophosphorylase. Plant Sci 161:461–468

    Article  CAS  Google Scholar 

  • Smidansky ED, Clancy M, Meyer FD, Lanning SP, Blake NK, Talbert LE, Giroux MJ (2002) Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc Natl Acad Sci USA 99:1724–1729

    Article  PubMed  CAS  Google Scholar 

  • Smidansky ED, Martin JM, Hannah LC, Fischer AM, Giroux MJ (2003) Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase. Planta 216:656–664

    PubMed  CAS  Google Scholar 

  • Sokolov LN, Dejardin A, Kleczkowski LA (1998) Sugars and light/dark exposure trigger differential regulation of ADP-glucose pyrophosphorylase genes in Arabidopsis thaliana (thale cress). Biochem J 336:681–687

    PubMed  CAS  Google Scholar 

  • Sowokinos J, Preiss J (1982) Pyrophosphorylases in Solanum tuberosum. III. Purification, physical, and catalytic properties of ADP-glucose pyrophosphorylase in potatoes. Plant Physiol 69:1459–1466

    Article  PubMed  CAS  Google Scholar 

  • Stark DM, Timmerman KP, Barry GF, Preiss J, Kishore GM (1992) Regulation of the amount of starch in plant tissues by ADP-glucose pyrophosphoryalse. Science 258:287–292

    Article  CAS  PubMed  Google Scholar 

  • Tetlow IJ, Morell MK, Emes MJ (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot 55:2131–2145

    Article  PubMed  CAS  Google Scholar 

  • Vigeolas H, Mohlmann T, Martini N, Neuhaus HE, Geigenberger P (2004) Embryo-specific reduction of ADP-glc pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of oilseed rape. Plant Physiol 136:2676–2686

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Nicki Engeseth for critical reading of the manuscript. This work was supported by start-up funds from the Department of Crop Sciences, University of Illinois to Y.L., The Illinois Agricultural Experimental Station, and a grant from The Department of Molecular Biology, Massachusetts General Hospital to H.M.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Lin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Ulanov, A.V., Lozovaya, V. et al. Genetic and transgenic perturbations of carbon reserve production in Arabidopsis seeds reveal metabolic interactions of biochemical pathways. Planta 225, 153–164 (2006). https://doi.org/10.1007/s00425-006-0337-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0337-6

Keywords

Navigation