Skip to main content
Log in

Unexpected behavior of coniferin in lignin biosynthesis of Ginkgo biloba L

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

To gain insight into the behavior of monolignol glucoside in Ginkgo biloba L., we examined glucosides potentially involved in lignin biosynthetic pathway. Coniferin (coniferyl alcohol 4O-β-D-glucoside) is a strong candidate for the storage form of monolignol. Coniferaldehyde glucoside may also have a role in lignin biosynthesis; this was examined with tracer experiments using labeled glucosides fed to stem segments. A series of tracer experiments showed that coniferin and coniferaldehyde glucoside were modified into coniferyl alcohol and then efficiently incorporated into lignin under the experimental conditions used. Interestingly, more than half of the administered coniferin underwent an oxidation to the aldehyde form before its aglycone; coniferyl alcohol was polymerized into lignin. This suggests that there is an alternative pathway for coniferin to enter the monolignol biosynthetic pathway, in addition to the direct pathway beginning with the deglucosylation of coniferin catalyzed by β-glucosidase. Enzymatic assays revealed that coniferaldehyde glucoside was produced enzymatically from coniferin, and that coniferaldehyde glucoside can be deglucosylated to yield coniferaldehyde, which could be fated to become coniferyl alcohol . Albeit the findings cannot be taken as proof for the in-planta functioning, these results present a possibility for the existence of alternative pathway in which some of the stored coniferin is oxidized to coniferaldehyde glucoside, which is deglucosylated to generate coniferaldehyde that joins the monolignol biosynthesis pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

G:

Guaiacyl lignin

S:

Syringyl lignin

UDPG:CAGT:

UDP-glucose:coniferyl alcohol glucosyl transferase

DFRC:

Derivatization followed by reductive cleavage

CAD:

Cinnamyl alcohol dehydrogenase

References

  • Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/ mutations on lignification and vascular integrity. Phytochemistry 61: 221–294

    Article  PubMed  CAS  Google Scholar 

  • Baucher M, Monties B, Van Montagu M, Boerjan W (1998) Biosynthesis and genetic engineering of lignin. Crit Rev in Plant Sci 17:125–197

    Article  CAS  Google Scholar 

  • Chen F, Yasuda S, Fukushima K (1999) Evidence for a novel biosynthetic pathway that regulates the ratio of syringyl to guaiacyl residues in lignin in the differentiating xylem of Magnolia kobus DC. Planta 207:597–603

    Article  CAS  Google Scholar 

  • Dharmawardhana DP, Ellis BE, Carlson JE (1995) A β-glucosidase from lodgepole pine xylem specific for the lignin precursor coniferin. Plant Physiol 107:331–3392

    Article  PubMed  CAS  Google Scholar 

  • Dharmawardhana DP, Ellis BE, Carlson JE (1999) cDNA cloning and heterologous expression of coniferin β-glucosidase. Plant Mol Biol 40:365–372

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Chen F, Guo D, Parvathi K (2001) The biosynthesis of monolignols: a “metabolic grid”, or independent pathways to guaiacyl and syringyl units?. Phytochemistry 57:1069–1084

    Article  PubMed  CAS  Google Scholar 

  • Föster H, Pommer U, Savidge RA (1999) Metabolic activity of uridine 5′-diphosphoglucose: cinnamyl alcohol glucosyltransferase as an intrinsic indicator of cambial growth in conifers. In: Gross GG, Hemingway RW, Yoshida T (eds) Plant polyphenols 2: Chemistry, biology, pharmacology, ecology. Kluwer/ Plenum, New York/Dordrecht, pp 371–392

    Google Scholar 

  • Föster H, Stteves V, Pommer U, Savidge RA (2000) UDPG: coniferyl alcohol glucosyltransferase and coniferin biosynthesis – a regulatory link to seasonal cambial growth in conifers. In: Savidge RA, Brnett TR, Napier R (eds) Cell and molecular biology of wood formation. BIOS, Oxford, pp 189–202

    Google Scholar 

  • Freudenberg K, Harkin JM (1963) The glucosides of cambial sap of spruce. Phytochemistry 2:189–193

    Article  CAS  Google Scholar 

  • Fukushima K, Terashima N (1991) Heterogeneity in formation of lignin XIV. Holzforschung 45:87–89

    Article  CAS  Google Scholar 

  • Hoffmann L, Maury S, Martz F, Geoffroy P, Legrand M (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J Biol Chem 278:95–103

    Article  PubMed  CAS  Google Scholar 

  • Hösel W, Todenhagen R (1980) Characterization of a β-glucosidase from Glycine max which hydrolyses coniferin and syringin. Phytochemistry 19:1349–1353

    Google Scholar 

  • Hösel W, Fiedler-Preiss A, Borgmann E (1982) Relationship of coniferin β-glucosidase to lignification in various plant cell suspension cultures. Plant Cell Org Cult 1:137–148

    Article  Google Scholar 

  • Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5:224–229

    Article  PubMed  CAS  Google Scholar 

  • Humphreys JM, Hemm MR, Chapple C (1999) New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxigenase. Proc Natl Acad Sci USA 96:10045–10050

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim RK, Grisebach H (1976) Purification and properties of UDP-glucose: coniferyl alcohol glucosyltransferase from suspension cultures of Paul’s scarlet rose. Arch of Biochemi and Biophys 176:700–708

    Article  CAS  Google Scholar 

  • Li L, Popko JL, Umezawa T, Chiang VL (2000) 5-Hydroxyconiferyl aldehyde modulates enzymatic methylation for syringyl monolignol formation, a new view of monolignol biosynthesis in angiosperms. J Biol Chem 275: 6537–6545

    Article  PubMed  CAS  Google Scholar 

  • Li L, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenese. Plant Cell 13:1567–1585

    Article  PubMed  CAS  Google Scholar 

  • Lu F, Ralph J (1997) Derivatization followed by reductive cleavage (DFRC method), a new method for lignin analysis: protocol for analysis of DFRC monomers. J Agric Food Chem 45:2590–2592

    Article  CAS  Google Scholar 

  • Marcinowski S, Grisebach H (1978) Enzymology of lignification: cell wall bound β-glucosidase for coniferin from spruce (Picea abies) seedlings. Eur J Biochem 87:37–44

    Article  PubMed  CAS  Google Scholar 

  • Matsui N, Fukushima K, Yasuda S, Terashima N (1996) On the behavior of monolignol glucosides in lignin biosynthesis. Holzforschung 50:408–412

    Article  CAS  Google Scholar 

  • Matsui N, Chen F, Yasuda S, Fukushima K (2000) Conversion of guaiasyl to syringyl moieties on the cinnnamyl alcohol pathway during the biosynthesis of lignin in angiosperms. Planta 210:831–835

    Article  PubMed  CAS  Google Scholar 

  • O’Malley DM, Porter S, Sederoff RR (1992) Purification, characterization, and cloning of cinnnamyl alcohol dehydrogenase in loblolly pine (Pinus taeda L). Plant Physiol 98:1364–1371

    Article  PubMed  Google Scholar 

  • Osakabe K, Tsai CC, Li L, Popko JL, Umezawa T, Carraway DT, Smeltzer RH, Joshi CP, Chiang VL (1999) Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proc Natl Acad Sci USA 96:8955–8960

    Article  PubMed  CAS  Google Scholar 

  • Samuels AL, Rensing KH, Douglas CJ, Mansfield SD, Dharmawardhana DP, Ellis BE (2002) Cellular machinery of wood production: differentiation of secondary xylem in Pinus contorta var latifolia. Planta 216: 72–82

    Article  PubMed  CAS  Google Scholar 

  • Savidge RA (1988) A biochemical indicator of commitment to tracheid differentiation in Pinus contorta. Can J Bot 66:2009–2012

    CAS  Google Scholar 

  • Savidge RA (1989) Coniferin, a biochemical indicator of commitment to tracheid differentiation in conifers. Can J Bot 67:2663–2668

    Article  CAS  Google Scholar 

  • Savidge RA Föster H (1998) Seasonal activity of uridine 5′-diphosphoglucose: coniferyl alcohol glucosyltransferase in relation to cambial growth and dormancy in conifers. Can J Bot 76: 486–493

    CAS  Google Scholar 

  • Schmid G, Grisebach H (1982) Enzymic synthesis of lignin precursors. Purification and properties of UDPglucose: coniferyl-alcohol glucosyltransferase from cambial sap of Spruce (Picea abies L). Eur J Chem 123:363–370

    CAS  Google Scholar 

  • Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, Werck-Reichhart (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276:36566–36574

    Article  PubMed  CAS  Google Scholar 

  • Sederoff RR, MacKay JJ, Ralph J, Hatfield RD (1999) Unexpected variation in lignin. Curr Opin Plant Biol 2:145–152

    Article  PubMed  CAS  Google Scholar 

  • Steeves V, Föster H, Pommer U, Savidge RA (2001) Coniferyl alcohol metabolism in conifers-I Glucosidic turnover of cinnamyl aldehydes by UDPG: coniferyl alcohol glucosyltransferase from pine cambium. Phytochemistry 57:1085–1093

    Article  PubMed  CAS  Google Scholar 

  • Terashima N, Fukushima K, Sano Y (1988) Heterogeneity in formation of lignin X. Holzforschung 42:347–350

    Article  CAS  Google Scholar 

  • Terazawa M, Okuyama H, Miyake M (1984) Phenolic compounds in living tissues of woods I Phenolic β-glucosides of 4-hydroxycinnamyl alcohol derivatives in the cambial sap of woods. Mokuzai Gakkaishi 30: 322–328

    CAS  Google Scholar 

  • Tsuji Y, Chen F, Yasuda S, Fukushima K (2004) The behavior of deuterium-labeled monolignol and monolignol glucosides in lignin biosynthesis in angiosperms. J Agric Food Chem 52:131–134

    Article  PubMed  CAS  Google Scholar 

  • Whetten RW, Mackay JJ, Sederoff RR (1998) Recent advances in understanding lignin biosynthesis. Annu Rev Plant Physiol. Plant Mol Biol 49:585–609

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research has been partly supported by a Grant-in-aid for Scientific Research (No. 14360097) from the Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Fukushima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuji, Y., Chen, F., Yasuda, S. et al. Unexpected behavior of coniferin in lignin biosynthesis of Ginkgo biloba L. Planta 222, 58–69 (2005). https://doi.org/10.1007/s00425-005-1517-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-1517-5

Keywords

Navigation