Skip to main content

Advertisement

Log in

The CNS under pathophysiologic attack—examining the role of K2P channels

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Members of the two-pore domain K+ channel (K2P) family are increasingly recognized as being potential targets for therapeutic drugs and could play a role in the diagnosis and treatment of neurologic disorders. Their broad and diverse expression pattern in pleiotropic cell types, importance in cellular function, unique biophysical properties, and sensitivity toward pathophysiologic parameters represent the basis for their involvement in disorders of the central nervous system (CNS). This review will focus on multiple sclerosis (MS) and stroke, as there is growing evidence for the involvement of K2P channels in these two major CNS disorders. In MS, TASK1–3 channels are expressed on T lymphocytes and are part of a signaling network regulating Ca2+- dependent pathways that are mandatory for T cell activation, differentiation, and effector functions. In addition, TASK1 channels are involved in neurodegeneration, resulting in autoimmune attack of CNS cells. On the blood–brain barrier, TREK1 channels regulate immune cell trafficking under autoinflammatory conditions. Cerebral ischemia shares some pathophysiologic similarities with MS, including hypoxia and extracellular acidosis. On a cellular level, K2P channels can have both proapoptotic and antiapoptotic effects, either promoting neurodegeneration or protecting neurons from ischemic cell death. TASK1 and TREK1 channels have a neuroprotective effect on stroke development, whereas TASK2 channels have a detrimental effect on neuronal survival under ischemic conditions. Future research in preclinical models is needed to provide a more detailed understanding of the contribution of K2P channel family members to neurologic disorders, before translation to the clinic is an option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ALA:

α-Linolenic acid

BBB:

Blood–brain barrier

BCR:

B cell receptor

CNS:

Central nervous system

CRAC:

Ca2+ release-activated channels

DAG:

Diacylglyceride

EAE:

Experimental autoimmune encephalomyelitis

GPCR:

G protein-coupled receptor

K2P :

Two-pore domain K+ channel

LPL:

Lysophospholipid

MCAO:

Medial cerebral artery occlusion

MOG:

Myelin oligodendrocyte glycoprotein

MS:

Multiple sclerosis

NOX4:

Nicotinamide adenine dinucleotide phosphate oxidase 4

PIP2 :

Phosphatidylinositol 4,5-bisphosphate

PLC:

Phospholipase C

PUFA:

Polyunsaturated fatty acid

TASK:

TWIK-related acid-sensitive K+ channel

Task1:

Task1 gene deficient

Th:

T helper cells

TCR:

T cell receptor

TRAAK:

TWIK-related arachidonic acid-stimulated K+ channel

TReg :

Regulatory T cells

TREK:

TWIK-related K+ channel

TRESK:

TWIK-related spinal cord K+ channel

TWIK:

The weak inwardly rectifying K+ channel

WT:

Wild-type

References

  1. Aller M, Veale E, Linden A-M, Sandu C, Schwaninger M, Evans L, Korpi E, Mathie A, Wisden W, Brickley S (2005) Modifying the subunit composition of TASK channels alters the modulation of a leak conductance in cerebellar granule neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 25(49):11455–11467. doi:10.1523/jneurosci. 3153-05.2005

    CAS  Google Scholar 

  2. Aryal P, Abd-Wahab F, Bucci G, Sansom MS, Tucker SJ (2014) A hydrophobic barrier deep within the inner pore of the TWIK-1 K2P potassium channel. Nat Commun 5:4377. doi:10.1038/ncomms5377

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Ataga KI, Reid M, Ballas SK, Yasin Z, Bigelow C, James LS, Smith WR, Galacteros F, Kutlar A, Hull JH, Stocker JW, Investigators ICAS (2011) Improvements in haemolysis and indicators of erythrocyte survival do not correlate with acute vaso-occlusive crises in patients with sickle cell disease: a phase III randomized, placebo-controlled, double-blind study of the Gardos channel blocker senicapoc (ICA-17043). Br J Haematol 153(1):92–104. doi:10.1111/j.1365-2141.2010.08520.x

    CAS  PubMed  Google Scholar 

  4. Bae CY, Sun HS (2011) TRPM7 in cerebral ischemia and potential target for drug development in stroke. Acta Pharmacol Sin 32(6):725–733. doi:10.1038/aps.2011.60

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Bartelt RR, Houtman JC (2013) The adaptor protein LAT serves as an integration node for signaling pathways that drive T cell activation. Wiley Interdiscip Rev Syst Biol Med 5(1):101–110. doi:10.1002/wsbm.1194

    CAS  PubMed  Google Scholar 

  6. Bayliss DA, Barrett PQ (2008) Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact. Trends Pharmacol Sci 29(11):566–575. doi:10.1016/j.tips.2008.07.013

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Bean B (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8(6):451–465. doi:10.1038/nrn2148

    CAS  PubMed  Google Scholar 

  8. Beeton C, Pennington MW, Norton RS (2011) Analogs of the sea anemone potassium channel blocker ShK for the treatment of autoimmune diseases. Inflammation & Allergy Drug Targets 10(5):313–321

    CAS  Google Scholar 

  9. Beeton C, Wulff H, Barbaria J, Clot-Faybesse O, Pennington M, Bernard D, Cahalan M, Chandy K, Béraud E (2001) Selective blockade of T lymphocyte K(+) channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci U S A 98(24):13942–13947. doi:10.1073/pnas.241497298

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Bertaccini EJ, Dickinson R, Trudell JR, Franks NP (2014) Molecular modeling of a tandem Two pore domain potassium channel reveals a putative binding site for general anesthetics. ACS Chem Neurosci. doi:10.1021/cn500172e

    PubMed  Google Scholar 

  11. Bista P, Cerina M, Ehling P, Leist M, Pape HC, Meuth SG, Budde T (2014) The role of two-pore-domain background K (K) channels in the thalamus. Pflugers Arch. doi:10.1007/s00424-014-1632-x

    PubMed  Google Scholar 

  12. Bista P, Meuth S, Kanyshkova T, Cerina M, Pawlowski M, Ehling P, Landgraf P, Borsotto M, Heurteaux C, Pape H-C, Baukrowitz T, Budde T (2012) Identification of the muscarinic pathway underlying cessation of sleep-related burst activity in rat thalamocortical relay neurons. Arch Eur J Physiol 463(1):89–102. doi:10.1007/s00424-011-1056-9

    CAS  Google Scholar 

  13. Bista P, Pawlowski M, Cerina M, Ehling P, Leist M, Meuth P, Aissaoui A, Borsotto M, Heurteaux C, Decher N, Pape HC, Oliver D, Meuth SG, Budde T (2014) Differential phospholipase C-dependent modulation of TWIK-related acid-sensitive K+ (TASK) and TWIK-related K+ (TREK) channels in rat thalamocortical relay neurons. J Physiol. doi:10.1113/jphysiol.2014.276527

    Google Scholar 

  14. Bittner S, Bauer MA, Ehling P, Bobak N, Breuer J, Herrmann AM, Golfels M, Wiendl H, Budde T, Meuth SG (2012) The TASK1 channel inhibitor A293 shows efficacy in a mouse model of multiple sclerosis. Exp Neurol 238(2):149–155. doi:10.1016/j.expneurol.2012.08.021

    CAS  PubMed  Google Scholar 

  15. Bittner S, Bobak N, Feuchtenberger M, Herrmann A, Göbel K, Kinne R, Hansen A, Budde T, Kleinschnitz C, Frey O, Tony H-P, Wiendl H, Meuth S (2011) Expression of K2P5.1 potassium channels on CD4+ T lymphocytes correlates with disease activity in rheumatoid arthritis patients. Arthritis research & therapy 13 (1). doi:10.1186/ar3245

  16. Bittner S, Bobak N, Herrmann A, Göbel K, Meuth P, Höhn K, Stenner M-P, Budde T, Wiendl H, Meuth S (2010) Upregulation of K2P5.1 potassium channels in multiple sclerosis. Ann Neurol 68(1):58–69. doi:10.1002/ana.22010

    CAS  PubMed  Google Scholar 

  17. Bittner S, Budde T, Wiendl H, Meuth S (2010) From the background to the spotlight: TASK channels in pathological conditions. Brain pathology (Zurich, Switzerland) 20(6):999–1009. doi:10.1111/j.1750-3639.2010.00407.x

    CAS  Google Scholar 

  18. Bittner S, Meuth S (2013) Targeting ion channels for the treatment of autoimmune neuroinflammation. Ther Adv Neurol Disord 6(5):322–336. doi:10.1177/1756285613487782

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Bittner S, Meuth S, Göbel K, Melzer N, Herrmann A, Simon O, Weishaupt A, Budde T, Bayliss D, Bendszus M, Wiendl H (2009) TASK1 modulates inflammation and neurodegeneration in autoimmune inflammation of the central nervous system. Brain 132(Pt 9):2501–2516. doi:10.1093/brain/awp163

    PubMed Central  PubMed  Google Scholar 

  20. Bittner S, Ruck T, Fernández-Orth J, Meuth S (2014) TREK-king the blood–brain-barrier. J Neuroimmune Pharma. doi:10.1007/s11481-014-9530-8

    Google Scholar 

  21. Bittner S, Ruck T, Schuhmann M, Herrmann A, Maati H, Bobak N, Göbel K, Langhauser F, Stegner D, Ehling P, Borsotto M, Pape H-C, Nieswandt B, Kleinschnitz C, Heurteaux C, Galla H-J, Budde T, Wiendl H, Meuth S (2013) Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med 19(9):1161–1165. doi:10.1038/nm.3303

    CAS  PubMed  Google Scholar 

  22. Blondeau N, Lauritzen I, Widmann C, Lazdunski M, Heurteaux C (2002) A potent protective role of lysophospholipids against global cerebral ischemia and glutamate excitotoxicity in neuronal cultures. J Cereb Blood Flow Metab 22(7):821–834. doi:10.1097/00004647-200207000-00007

    CAS  PubMed  Google Scholar 

  23. Bobak N, Bittner S, Andronic J, Hartmann S, Mühlpfordt F, Schneider-Hohendorf T, Wolf K, Schmelter C, Göbel K, Meuth P, Zimmermann H, Döring F, Wischmeyer E, Budde T, Wiendl H, Meuth S, Sukhorukov V (2011) Volume regulation of murine T lymphocytes relies on voltage-dependent and two-pore domain potassium channels. Biochim Biophys Acta 1808(8):2036–2044. doi:10.1016/j.bbamem.2011.04.013

    CAS  PubMed  Google Scholar 

  24. Brohawn SG, del Marmol J, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335(6067):436–441. doi:10.1126/science.1213808

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Brown RC, Mark KS, Egleton RD, Davis TP (2004) Protection against hypoxia-induced blood–brain barrier disruption: changes in intracellular calcium. Am J Physiol Cell Physiol 286(5):C1045–C1052. doi:10.1152/ajpcell.00360.2003

    CAS  PubMed  Google Scholar 

  26. Buckler KJ (2007) TASK-like potassium channels and oxygen sensing in the carotid body. Respir Physiol Neurobiol 157(1):55–64. doi:10.1016/j.resp.2007.02.013

    CAS  PubMed  Google Scholar 

  27. Buckler KJ, Honoré E (2005) The lipid-activated two-pore domain K+ channel TREK-1 is resistant to hypoxia: implication for ischaemic neuroprotection. J Physiol 562:213–222. doi:10.1113/jphysiol.2004.077503

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Budde T, Coulon P, Pawlowski M, Meuth P, Kanyshkova T, Japes A, Meuth S, Pape H-C (2008) Reciprocal modulation of I (h) and I (TASK) in thalamocortical relay neurons by halothane. Pflugers Arch 456(6):1061–1073. doi:10.1007/s00424-008-0482-9

    CAS  PubMed  Google Scholar 

  29. Budde T, Mager R, Pape H-C (1992) Different types of potassium outward current in relay neurons acutely isolated from the Rat lateral geniculate nucleus. Eur J Neurosci 4(8):708–722

    PubMed  Google Scholar 

  30. Budde T, Minta A, White JA, Kay AR (1997) Imaging free zinc in synaptic terminals in live hippocampal slices. Neuroscience 79(2):347–358

    CAS  PubMed  Google Scholar 

  31. Cabezas R, Avila M, Gonzalez J, El-Bacha RS, Baez E, Garcia-Segura LM, Jurado Coronel JC, Capani F, Cardona-Gomez GP, Barreto GE (2014) Astrocytic modulation of blood brain barrier: perspectives on Parkinson's disease. Front Cell Neurosci 8:211. doi:10.3389/fncel.2014.00211

    PubMed Central  PubMed  Google Scholar 

  32. Cahalan M, Chandy K (2009) The functional network of ion channels in T lymphocytes. Immunol Rev 231(1):59–87. doi:10.1111/j.1600-065X.2009.00816.x

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Cahalan MD, Chandy KG, DeCoursey TE, Gupta S (1985) A voltage-gated potassium channel in human T lymphocytes. J Physiol 358:197–237

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Caley AJ, Gruss M, Franks NP (2005) The effects of hypoxia on the modulation of human TREK-1 potassium channels. J Physiol 562:205–212. doi:10.1113/jphysiol.2004.076240

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Carandang R, Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Kannel WB, Wolf PA (2006) Trends in incidence, lifetime risk, severity, and 30-day mortality of stroke over the past 50 years. JAMA : The Journal of the American Medical Association 296(24):2939–2946. doi:10.1001/jama.296.24.2939

  36. Chhabra S, Chang SC, Nguyen HM, Huq R, Tanner MR, Londono LM, Estrada R, Dhawan V, Chauhan S, Upadhyay SK, Gindin M, Hotez PJ, Valenzuela JG, Mohanty B, Swarbrick JD, Wulff H, Iadonato SP, Gutman GA, Beeton C, Pennington MW, Norton RS, Chandy KG (2014) Kv1.3 channel-blocking immunomodulatory peptides from parasitic worms: implications for autoimmune diseases. FASEB J. doi:10.1096/fj.14-251967

  37. Chou CC, Lunn CA, Murgolo NJ (2008) KCa3.1: target and marker for cancer, autoimmune disorder and vascular inflammation? Expert Rev Mol Diagn 8(2):179–187. doi:10.1586/14737159.8.2.179

    CAS  PubMed  Google Scholar 

  38. Chu KC, Chiu CD, Hsu TT, Hsieh YM, Huang YY, Lien CC (2010) Functional identification of an outwardly rectifying pH- and anesthetic-sensitive leak K(+) conductance in hippocampal astrocytes. Eur J Neurosci 32(5):725–735. doi:10.1111/j.1460-9568.2010.07323.x

    PubMed  Google Scholar 

  39. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372(9648):1502–1517. doi:10.1016/S0140-6736(08)61620-7

    CAS  PubMed  Google Scholar 

  40. Constantinescu CS, Farooqi N, O'Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164(4):1079–1106. doi:10.1111/j.1476-5381.2011.01302.x

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Craner M, Newcombe J, Black J, Hartle C, Cuzner M, Waxman S (2004) Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proc Natl Acad Sci U S A 101(21):8168–8173. doi:10.1073/pnas.0402765101

    PubMed Central  CAS  PubMed  Google Scholar 

  42. DeCoursey T, Chandy K, Gupta S, Cahalan M (1984) Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature 307(5950):465–468

    CAS  PubMed  Google Scholar 

  43. Di L, Srivastava S, Zhdanova O, Ding Y, Li Z, Wulff H, Lafaille M, Skolnik EY (2010) Inhibition of the K+ channel KCa3.1 ameliorates T cell-mediated colitis. Proc Natl Acad Sci U S A 107(4):1541–1546. doi:10.1073/pnas.0910133107

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Dirnagl U, Endres M (2014) Found in translation: preclinical stroke research predicts human pathophysiology, clinical phenotypes, and therapeutic outcomes. Stroke 45(5):1510–1518. doi:10.1161/STROKEAHA.113.004075

    PubMed  Google Scholar 

  45. Dirnagl U, Iadecola C, Moskowitz M (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22(9):391–397

    CAS  PubMed  Google Scholar 

  46. Djukic B, Casper K, Philpot B, Chin L-S, McCarthy K (2007) Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 27(42):11354–11365. doi:10.1523/jneurosci. 0723-07.2007

    CAS  Google Scholar 

  47. Dobler T, Springauf A, Tovornik S, Weber M, Schmitt A, Sedlmeier R, Wischmeyer E, Döring F (2007) TRESK two-pore-domain K+ channels constitute a significant component of background potassium currents in murine dorsal root ganglion neurones. J Physiol 585(Pt 3):867–879. doi:10.1113/jphysiol.2007.145649

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Dong YF, Wang LX, Huang X, Cao WJ, Lu M, Ding JH, Sun XL, Hu G (2013) Kir6.1 knockdown aggravates cerebral ischemia/reperfusion-induced neural injury in mice. CNS Neuroscience & Therapeutics 19(8):617–624. doi:10.1111/cns.12117

    CAS  Google Scholar 

  49. Duan B, Wang YZ, Yang T, Chu XP, Yu Y, Huang Y, Cao H, Hansen J, Simon RP, Zhu MX, Xiong ZG, Xu TL (2011) Extracellular spermine exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. J Neurosci 31(6):2101–2112. doi:10.1523/JNEUROSCI. 4351-10.2011

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Duprat F, Lauritzen I, Patel A, Honoré E (2007) The TASK background K2P channels: chemo- and nutrient sensors. Trends Neurosci 30(11):573–580. doi:10.1016/j.tins.2007.08.003

    CAS  PubMed  Google Scholar 

  51. Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M (1997) TASK, a human background K+ channel to sense external pH variations near physiological pH. The EMBO Journal 16(17):5464–5471. doi:10.1093/emboj/16.17.5464

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Eckert M, Egenberger B, Doring F, Wischmeyer E (2011) TREK-1 isoforms generated by alternative translation initiation display different susceptibility to the antidepressant fluoxetine. Neuropharmacology 61(5–6):918–923. doi:10.1016/j.neuropharm.2011.06.020

    CAS  PubMed  Google Scholar 

  53. Ehling P, Bittner S, Bobak N, Schwarz T, Wiendl H, Budde T, Kleinschnitz C, Meuth S (2010) Two pore domain potassium channels in cerebral ischemia: a focus on K2P9.1 (TASK3, KCNK9). Experimental & Translational Stroke Medicine 2 (1):14. doi:10.1186/2040-7378-2-14

  54. Ehling P, Bittner S, Budde T, Wiendl H, Meuth S (2011) Ion channels in autoimmune neurodegeneration. FEBS Lett 585(23):3836–3842. doi:10.1016/j.febslet.2011.03.065

    CAS  PubMed  Google Scholar 

  55. Ehling P, Göb E, Bittner S, Budde T, Ludwig A, Kleinschnitz C, Meuth S (2013) Ischemia-induced cell depolarization: does the hyperpolarization-activated cation channel HCN2 affect the outcome after stroke in mice? Ex Transl Stroke Med 5(1):16. doi:10.1186/2040-7378-5-16

    Google Scholar 

  56. Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M, Lazdunski M (1998) A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. The EMBO Journal 17(12):3297–3308. doi:10.1093/emboj/17.12.3297

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Flaherty DP, Simpson DS, Miller M, Maki BE, Zou B, Shi J, Wu M, McManus OB, Aube J, Li M, Golden JE (2014) Potent and selective inhibitors of the TASK-1 potassium channel through chemical optimization of a bis-amide scaffold. Bioorg Med Chem Lett 24(16):3968–3973. doi:10.1016/j.bmcl.2014.06.032

    CAS  PubMed  Google Scholar 

  58. Franks NP, Honoré E (2004) The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmacol Sci 25:601–608. doi:10.1016/j.tips.2004.09.003

    CAS  PubMed  Google Scholar 

  59. Frederickson CJ, Giblin LJ, Krezel A, McAdoo DJ, Mueller RN, Zeng Y, Balaji RV, Masalha R, Thompson RB, Fierke CA, Sarvey JM, de Valdenebro M, Prough DS, Zornow MH (2006) Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp Neurol 198(2):285–293. doi:10.1016/j.expneurol.2005.08.030

    CAS  PubMed  Google Scholar 

  60. Friese MA, Schattling B, Fugger L (2014) Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat Rev Neurol. doi:10.1038/nrneurol.2014.37

    PubMed  Google Scholar 

  61. Ge L, Hoa NT, Wilson Z, Arismendi-Morillo G, Kong XT, Tajhya RB, Beeton C, Jadus MR (2014) Big Potassium (BK) ion channels in biology, disease and possible targets for cancer immunotherapy. Int Immunopharmacol 22(2):427–443. doi:10.1016/j.intimp.2014.06.040

    CAS  PubMed  Google Scholar 

  62. Gestreau C, Heitzmann D, Thomas J, Dubreuil V, Bandulik S, Reichold M, Bendahhou S, Pierson P, Sterner C, Peyronnet-Roux J, Benfriha C, Tegtmeier I, Ehnes H, Georgieff M, Lesage F, Brunet JF, Goridis C, Warth R, Barhanin J (2010) Task2 potassium channels set central respiratory CO2 and O2 sensitivity. Proc Natl Acad Sci U S A 107(5):2325–2330. doi:10.1073/pnas.0910059107

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Göb E, Bittner S, Bobak N, Kraft P, Gobel K, Langhauser F, Homola GA, Brede M, Budde T, Meuth SG, Kleinschnitz C (2014) The two-pore domain potassium channel KCNK5 deteriorates outcome in ischemic neurodegeneration. Pflugers Arch. doi:10.1007/s00424-014-1626-8

    PubMed  Google Scholar 

  64. Göbel K, Bittner S, Ruck T, Budde T, Wischmeyer E, Döring F, Wiendl H, Meuth S (2011) Active immunization with proteolipid protein (190–209) induces ascending paralysing experimental autoimmune encephalomyelitis in C3H/HeJ mice. J Immunol Methods 367(1–2):27–32. doi:10.1016/j.jim.2010.12.018

    PubMed  Google Scholar 

  65. Goldstein S, Bockenhauer D, O'Kelly I, Zilberberg N (2001) Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2(3):175–184. doi:10.1038/35058574

    CAS  PubMed  Google Scholar 

  66. Gonzalez C, Baez-Nieto D, Valencia I, Oyarzun I, Rojas P, Naranjo D, Latorre R (2012) K(+) channels: function-structural overview. Compr Physiol 2(3):2087–2149. doi:10.1002/cphy.c110047

    PubMed  Google Scholar 

  67. Grinstein S, Smith JD (1990) Calcium-independent cell volume regulation in human lymphocytes. Inhibition by charybdotoxin. J Gen Physiol 95(1):97–120

    CAS  PubMed  Google Scholar 

  68. Grissmer S, Nguyen A, Cahalan M (1993) Calcium-activated potassium channels in resting and activated human T lymphocytes. Expression levels, calcium dependence, ion selectivity, and pharmacology. J Gen Physio 102(4):601–630

    CAS  Google Scholar 

  69. Hawkins V, Butt A (2013) TASK-1 channels in oligodendrocytes: a role in ischemia mediated disruption. Neurobiol Dis 55:87–94. doi:10.1016/j.nbd.2013.03.016

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Heo JH, Han SW, Lee SK (2005) Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med 39(1):51–70. doi:10.1016/j.freeradbiomed.2005.03.035

    CAS  PubMed  Google Scholar 

  71. Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca M, Lang-Lazdunski L, Widmann C, Zanzouri M, Romey G, Lazdunski M (2004) TREK-1, a K+ channel involved in neuroprotection and general anesthesia. The EMBO Journal 23(13):2684–2695. doi:10.1038/sj.emboj.7600234

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Heurteaux C, Lucas G, Guy N, El Yacoubi M, Thummler S, Peng XD, Noble F, Blondeau N, Widmann C, Borsotto M, Gobbi G, Vaugeois JM, Debonnel G, Lazdunski M (2006) Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype. Nat Neurosci 9(9):1134–1141. doi:10.1038/nn1749

    CAS  PubMed  Google Scholar 

  73. Honoré E, Maingret F, Lazdunski M, Patel AJ (2002) An intracellular proton sensor commands lipid- and mechano-gating of the K(+) channel TREK-1. EMBO J 21(12):2968–2976. doi:10.1093/emboj/cdf288

    PubMed Central  PubMed  Google Scholar 

  74. Kieseier BC, Hartung H-P (2013) Targeting two-pore domain potassium channels - a promising strategy for treating T cell mediated autoimmunity. Exp Neurol 247:286–288. doi:10.1016/j.expneurol.2013.01.016

    CAS  PubMed  Google Scholar 

  75. Kim D, Cavanaugh EJ, Kim I, Carroll JL (2009) Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K+ channel in rat carotid body glomus cells. J Physiol 587(Pt 12):2963–2975. doi:10.1113/jphysiol.2009.171181

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Kim Y, Bang H, Gnatenco C, Kim D (2001) Synergistic interaction and the role of C-terminus in the activation of TRAAK K+ channels by pressure, free fatty acids and alkali. Pflugers Arch 442(1):64–72

    CAS  PubMed  Google Scholar 

  77. Kim Y, Lee SH, Ho WK (2007) Hydrogen peroxide selectively increases TREK-2 currents via myosin light chain kinases frontiers in bioscience. J Virtual Libr 12:1642–1650

    CAS  Google Scholar 

  78. Kitamura Y, Iida Y, Abe J, Mifune M, Kasuya F, Ohta M, Igarashi K, Saito Y, Saji H (2006) Release of vesicular Zn2+ in a rat transient middle cerebral artery occlusion model. Brain Res Bull 69(6):622–625. doi:10.1016/j.brainresbull.2006.03.004

    CAS  PubMed  Google Scholar 

  79. Kleinschnitz C, Grund H, Wingler K, Armitage M, Jones E, Mittal M, Barit D, Schwarz T, Geis C, Kraft P, Barthel K, Schuhmann M, Herrmann A, Meuth S, Stoll G, Meurer S, Schrewe A, Becker L, Gailus-Durner V, Fuchs H, Klopstock T, de Angelis M, Jandeleit-Dahm K, Shah A, Weissmann N, Schmidt HH (2010) Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biology 8 (9). doi:10.1371/journal.pbio.1000479

  80. Kostandy BB (2012) The role of glutamate in neuronal ischemic injury: the role of spark in fire. Neurol Sci 33(2):223–237. doi:10.1007/s10072-011-0828-5

    PubMed  Google Scholar 

  81. Kostic M, Zivkovic N, Stojanovic I (2013) Multiple sclerosis and glutamate excitotoxicity. Rev Neurosci 24(1):71–88. doi:10.1515/revneuro-2012-0062

    CAS  PubMed  Google Scholar 

  82. Laigle C, Confort-Gouny S, Le Fur Y, Cozzone P, Viola A (2012) Deletion of TRAAK potassium channel affects brain metabolism and protects against ischemia. PloS one 7 (12). doi:10.1371/journal.pone.0053266

  83. Lam J, Wulff H (2011) The Lymphocyte Potassium Channels Kv1.3 and KCa3.1 as Targets for Immunosuppression. Drug Dev Res 72(7):573–584. doi:10.1002/ddr.20467

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Lang-Lazdunski L, Blondeau N, Jarretou G, Lazdunski M, Heurteaux C (2003) Linolenic acid prevents neuronal cell death and paraplegia after transient spinal cord ischemia in rats. J Vasc Surg 38:564–575

    PubMed  Google Scholar 

  85. Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460(2):525–542. doi:10.1007/s00424-010-0809-1

    CAS  PubMed  Google Scholar 

  86. Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, Lazdunski M (2000) Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 19(8):1784–1793. doi:10.1093/emboj/19.8.1784

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Lee Y-M, Kim B-J, Chun Y-S, So I, Choi H, Kim M-S, Park J-W (2006) NOX4 as an oxygen sensor to regulate TASK-1 activity. Cell Signal 18(4):499–507. doi:10.1016/j.cellsig.2005.05.025

    CAS  PubMed  Google Scholar 

  88. Lesage F, Barhanin J (2011) Molecular physiology of pH-sensitive background K(2P) channels. Physiology 26(6):424–437. doi:10.1152/physiol.00029.2011

    CAS  PubMed  Google Scholar 

  89. Lesage F, Terrenoire C, Romey G, Lazdunski M (2000) Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 275(37):28398–28405. doi:10.1074/jbc.M002822200

    CAS  PubMed  Google Scholar 

  90. Lewis A, Hartness ME, Chapman CG, Fearon IM, Meadows HJ, Peers C, Kemp PJ (2001) Recombinant hTASK1 is an O(2)-sensitive K(+) channel. Biochem Biophys Res Commun 285(5):1290–1294. doi:10.1006/bbrc.2001.5310

    CAS  PubMed  Google Scholar 

  91. Liu Y, Sun Q, Chen X, Jing L, Wang W, Yu Z, Zhang G, Xie M (2014) Linolenic acid provides multi-cellular protective effects after photothrombotic cerebral ischemia in rats. Neurochem Res. doi:10.1007/s11064-014-1390-3

    Google Scholar 

  92. Logsdon NJ, Kang J, Togo JA, Christian EP, Aiyar J (1997) A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J Biol Chem 272(52):32723–32726

    CAS  PubMed  Google Scholar 

  93. Loh KP, Ng G, Yu CY, Fhu CK, Yu D, Vennekens R, Nilius B, Soong TW, Liao P (2014) TRPM4 inhibition promotes angiogenesis after ischemic stroke. Pflugers Arch 466(3):563–576. doi:10.1007/s00424-013-1347-4

    CAS  PubMed  Google Scholar 

  94. Lopes CM, Zilberberg N, Goldstein SA (2001) Block of Kcnk3 by protons. Evidence that 2-P-domain potassium channel subunits function as homodimers. J Biol Chem 276(27):24449–24452. doi:10.1074/jbc.C100184200

    CAS  PubMed  Google Scholar 

  95. Lotshaw DP (2007) Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels. Cell Biochem Biophys 47(2):209–256

    CAS  PubMed  Google Scholar 

  96. Lu L, Wang W, Peng Y, Li J, Wang L, Wang X (2014) Electrophysiology and pharmacology of tandem domain potassium channel TREK-1 related BDNF synthesis in rat astrocytes. Naunyn Schmiedebergs Arch Pharmacol 387(4):303–312. doi:10.1007/s00210-013-0952-2

    CAS  PubMed  Google Scholar 

  97. Lucke-Wold BP, Logsdon AF, Turner RC, Rosen CL, Huber JD (2014) Aging, the metabolic syndrome, and ischemic stroke: redefining the approach for studying the blood–brain barrier in a complex neurological disease. Adv Pharmacol 71:411–449. doi:10.1016/bs.apha.2014.07.001

    CAS  PubMed  Google Scholar 

  98. Maingret F, Patel AJ, Lesage F, Lazdunski M, Honore E (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274(38):26691–26696

    CAS  PubMed  Google Scholar 

  99. Marek N, Mysliwska J, Raczynska K, Trzonkowski P (2010) Membrane potential of CD4+ T cells is a subset specific feature that depends on the direct cell-to-cell contacts with monocytes. Hum Immunol 71(7):666–675. doi:10.1016/j.humimm.2010.05.002

    CAS  PubMed  Google Scholar 

  100. Marinc C, Derst C, Prüss H, Veh RW (2014) Immunocytochemical localization of TASK-3 protein (K2P9.1) in the rat brain. Cell Mol Neurobiol 34:61–70. doi:10.1007/s10571-013-9987-7

    CAS  PubMed  Google Scholar 

  101. Mathie A (2007) Neuronal two-pore-domain potassium channels and their regulation by G protein-coupled receptors. J Physiol 578(Pt 2):377–385. doi:10.1113/jphysiol.2006.121582

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Mathie A, Veale EL (2007) Therapeutic potential of neuronal two-pore domain potassium-channel modulators. Curr Opin Investig Drugs 8(7):555–562

    CAS  PubMed  Google Scholar 

  103. Matteson DR, Deutsch C (1984) K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature 307(5950):468–471

    CAS  PubMed  Google Scholar 

  104. Mazella J, Petrault O, Lucas G, Deval E, Beraud-Dufour S, Gandin C, El-Yacoubi M, Widmann C, Guyon A, Chevet E, Taouji S, Conductier G, Corinus A, Coppola T, Gobbi G, Nahon JL, Heurteaux C, Borsotto M (2010) Spadin, a sortilin-derived peptide, targeting rodent TREK-1 channels: a new concept in the antidepressant drug design. PLoS Biol 8(4):e1000355. doi:10.1371/journal.pbio.1000355

    PubMed Central  PubMed  Google Scholar 

  105. Mello de Queiroz F, Ponte C, Bonomo A, Vianna-Jorge R, Suarez-Kurtz G (2008) Study of membrane potential in T lymphocytes subpopulations using flow cytometry. BMC Immunol 9:63. doi:10.1186/1471-2172-9-63

    PubMed Central  PubMed  Google Scholar 

  106. Meuth S, Aller M, Munsch T, Schuhmacher T, Seidenbecher T, Meuth P, Kleinschnitz C, Pape H-C, Wiendl H, Wisden W, Budde T (2006) The contribution of TWIK-related acid-sensitive K + −containing channels to the function of dorsal lateral geniculate thalamocortical relay neurons. Mol Pharmacol 69(4):1468–1476. doi:10.1124/mol.105.020594

    CAS  PubMed  Google Scholar 

  107. Meuth S, Bittner S, Meuth P, Simon O, Budde T, Wiendl H (2008) TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 critically influence T lymphocyte effector functions. J Biol Chem 283(21):14559–14570. doi:10.1074/jbc.M800637200

    CAS  PubMed  Google Scholar 

  108. Meuth S, Budde T, Duyar H, Landgraf P, Broicher T, Elbs M, Brock R, Weller M, Weissert R, Wiendl H (2003) Modulation of neuronal activity by the endogenous pentapeptide QYNAD. Eur J Neurosci 18(10):2697–2706

    PubMed  Google Scholar 

  109. Meuth S, Budde T, Kanyshkova T, Broicher T, Munsch T, Pape H-C (2003) Contribution of TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 channels to the control of activity modes in thalamocortical neurons. The Journal of neuroscience : the official Journal of the Society for Neuroscience 23(16):6460–6469

    CAS  Google Scholar 

  110. Meuth S, Kanyshkova T, Melzer N, Bittner S, Kieseier B, Budde T, Wiendl H (2008) Altered neuronal expression of TASK1 and TASK3 potassium channels in rodent and human autoimmune CNS inflammation. Neurosci Lett 446(2–3):133–138. doi:10.1016/j.neulet.2008.09.038

    CAS  PubMed  Google Scholar 

  111. Meuth S, Kanyshkova T, Meuth P, Landgraf P, Munsch T, Ludwig A, Hofmann F, Pape H-C, Budde T (2006) Membrane resting potential of thalamocortical relay neurons is shaped by the interaction among TASK3 and HCN2 channels. J Neurophysiol 96(3):1517–1529. doi:10.1152/jn.01212.2005

    CAS  PubMed  Google Scholar 

  112. Meuth S, Kleinschnitz C, Broicher T, Austinat M, Braeuninger S, Bittner S, Fischer S, Bayliss D, Budde T, Stoll G, Wiendl H (2009) The neuroprotective impact of the leak potassium channel TASK1 on stroke development in mice. Neurobiol Dis 33(1):1–11. doi:10.1016/j.nbd.2008.09.006

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Meuth S, Melzer N, Kleinschnitz C, Budde T, Wiendl H (2009) Multiple sclerosis – a channelopathy? Targeting ion channels and transporters in inflammatory neurodegeneration. Nervenarzt 80(4):422–429. doi:10.1007/s00115-008-2599-7

    CAS  PubMed  Google Scholar 

  114. Miller AN, Long SB (2012) Crystal structure of the human two-pore domain potassium channel K2P1. Science 335(6067):432–436. doi:10.1126/science.1213274

    CAS  PubMed  Google Scholar 

  115. Miller MR, Zou B, Shi J, Flaherty DP, Simpson DS, Yao T, Maki BE, Day VW, Douglas JT, Wu M, McManus OB, Golden JE, Aube J, Li M (2010) Development of a Selective Chemical Inhibitor for the Two-Pore Potassium Channel, KCNK9. In: Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD),

  116. Miller P, Kemp PJ, Lewis A, Chapman CG, Meadows HJ, Peers C (2003) Acute hypoxia occludes hTREK-1 modulation: re-evaluation of the potential role of tandem P domain K+ channels in central neuroprotection. J Physiol 548(Pt 1):31–37. doi:10.1113/jphysiol.2003.040048

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Mizee MR, Nijland PG, van der Pol SM, Drexhage JA, van Het Hof B, Mebius R, van der Valk P, van Horssen J, Reijerkerk A, de Vries HE (2014) Astrocyte-derived retinoic acid: a novel regulator of blood–brain barrier function in multiple sclerosis. Acta Neuropathol 128(5):691–703. doi:10.1007/s00401-014-1335-6

    CAS  PubMed  Google Scholar 

  118. Moha Ou Maati H, Veyssiere J, Labbal F, Coppola T, Gandin C, Widmann C, Mazella J, Heurteaux C, Borsotto M (2012) Spadin as a new antidepressant: absence of TREK-1-related side effects. Neuropharmacology 62(1):278–288. doi:10.1016/j.neuropharm.2011.07.019

    CAS  PubMed  Google Scholar 

  119. Muhammad S, Aller MI, Maser-Gluth C, Schwaninger M, Wisden W (2010) Expression of the kcnk3 potassium channel gene lessens the injury from cerebral ischemia, most likely by a general influence on blood pressure. Neuroscience 167(3):758–764. doi:10.1016/j.neuroscience.2010.02.024

    CAS  PubMed  Google Scholar 

  120. Musset B, Meuth S, Liu G, Derst C, Wegner S, Pape H-C, Budde T, Preisig-Müller R, Daut J (2006) Effects of divalent cations and spermine on the K+ channel TASK-3 and on the outward current in thalamic neurons. J Physiol 572(Pt 3):639–657. doi:10.1113/jphysiol.2006.106898

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Nam JH, Shin DH, Zheng H, Lee DS, Park SJ, Park KS, Kim SJ (2011) Expression of TASK-2 and its upregulation by B cell receptor stimulation in WEHI-231 mouse immature B cells. Am J Physiol Cell Physiol 300(5):C1013–C1022. doi:10.1152/ajpcell.00475.2010

    CAS  PubMed  Google Scholar 

  122. Nam JH, Woo JE, Uhm DY, Kim SJ (2004) Membrane-delimited regulation of novel background K+ channels by MgATP in murine immature B cells. J Biol Chem 279(20):20643–20654. doi:10.1074/jbc.M312547200

    CAS  PubMed  Google Scholar 

  123. Nicolas MT, Lesage F, Reyes R, Barhanin J, Dememes D (2004) Localization of TREK-1, a two-pore-domain K+ channel in the peripheral vestibular system of mouse and rat. Brain Res 1017(1–2):46–52. doi:10.1016/j.brainres.2004.05.012

    CAS  PubMed  Google Scholar 

  124. Niemeyer MI, Cid LP, Pena-Munzenmayer G, Sepulveda FV (2010) Separate gating mechanisms mediate the regulation of K2P potassium channel TASK-2 by intra- and extracellular pH. J Biol Chem 285(22):16467–16475. doi:10.1074/jbc.M110.107060

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Nilius B, Droogmans G (2001) Ion channels and their functional role in vascular endothelium. Physiol Rev 81(4):1415–1459

    CAS  PubMed  Google Scholar 

  126. Paltser G, Liu XJ, Yantha J, Winer S, Tsui H, Wu P, Maezawa Y, Cahill LS, Laliberte CL, Ramagopalan SV, DeLuca GC, Sadovnick AD, Astsaturov I, Ebers GC, Henkelman RM, Salter MW, Dosch HM (2013) TRPV1 gates tissue access and sustains pathogenicity in autoimmune encephalitis. Mol Med 19:149–159. doi:10.2119/molmed.2012.00329

    PubMed Central  PubMed  Google Scholar 

  127. Panyi G (2005) Biophysical and pharmacological aspects of K+ channels in T lymphocytes. Eur Biophys J 34(6):515–529

    PubMed  Google Scholar 

  128. Peng Y, Lu K, Li Z, Zhao Y, Wang Y, Hu B, Xu P, Shi X, Zhou B, Pennington M, Chandy KG, Tang Y (2014) Blockade of Kv1.3 channels ameliorates radiation-induced brain injury. Neuro-Oncology 16(4):528–539. doi:10.1093/neuonc/not221

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Plant LD, Kemp PJ, Peers C, Henderson Z, Pearson HA (2002) Hypoxic depolarization of cerebellar granule neurons by specific inhibition of TASK-1. Stroke 33(9):2324–2328

    PubMed  Google Scholar 

  130. Pottosin I, Bonales-Alatorre E, Valencia-Cruz G, Mendoza-Magaña M, Dobrovinskaya O (2008) TRESK-like potassium channels in leukemic T cells. Arch Eur J Physiol 456(6):1037–1048. doi:10.1007/s00424-008-0481-x

    CAS  Google Scholar 

  131. Putzke C, Wemhöner K, Sachse F, Rinné S, Schlichthörl G, Li X, Jaé L, Eckhardt I, Wischmeyer E, Wulf H, Preisig-Müller R, Daut J, Decher N (2007) The acid-sensitive potassium channel TASK-1 in rat cardiac muscle. Cardiovasc Res 75(1):59–68. doi:10.1016/j.cardiores.2007.02.025

    CAS  PubMed  Google Scholar 

  132. Radermacher K, Wingler K, Langhauser F, Altenhöfer S, Kleikers P, Hermans J, Hrabě de Angelis M, Kleinschnitz C, Schmidt HH (2013) Neuroprotection after stroke by targeting NOX4 as a source of oxidative stress. Antioxidants & Redox Signaling 18(12):1418–1427. doi:10.1089/ars.2012.4797

    CAS  Google Scholar 

  133. Rajan S, Wischmeyer E, Xin Liu G, Preisig-Müller R, Daut J, Karschin A, Derst C (2000) TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histiding as pH sensor. The Journal of biological chemistry 275(22):16650–16657. doi:10.1074/jbc.M000030200

    CAS  PubMed  Google Scholar 

  134. Reich E-P, Cui L, Yang L, Pugliese-Sivo C, Golovko A, Petro M, Vassileva G, Chu I, Nomeir A, Zhang L-K, Liang X, Kozlowski J, Narula S, Zavodny P, Chou C-C (2005) Blocking ion channel KCNN4 alleviates the symptoms of experimental autoimmune encephalomyelitis in mice. Eur J Immunol 35(4):1027–1036. doi:10.1002/eji.200425954

    CAS  PubMed  Google Scholar 

  135. Rus H, Pardo C, Hu L, Darrah E, Cudrici C, Niculescu T, Niculescu F, Mullen K, Allie R, Guo L, Wulff H, Beeton C, Judge S, Kerr D, Knaus H-G, Chandy K, Calabresi P (2005) The voltage-gated potassium channel Kv1.3 is highly expressed on inflammatory infiltrates in multiple sclerosis brain. Proc Natl Acad Sci U S A 102(31):11094–11099. doi:10.1073/pnas.0501770102

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Sabbadini M, Yost CS (2009) Molecular biology of background K channels: insights from K(2P) knockout mice. J Mol Biol 385(5):1331–1344. doi:10.1016/j.jmb.2008.11.048

    CAS  PubMed  Google Scholar 

  137. Schattling B, Eggert B, Friese MA (2014) Acquired channelopathies as contributors to development and progression of multiple sclerosis. Exp Neurol. doi:10.1016/j.expneurol.2013.12.006

    PubMed  Google Scholar 

  138. Schiekel J, Lindner M, Hetzel A, Wemhoner K, Renigunta V, Schlichthorl G, Decher N, Oliver D, Daut J (2013) The inhibition of the potassium channel TASK-1 in rat cardiac muscle by endothelin-1 is mediated by phospholipase C. Cardiovasc Res 97(1):97–105. doi:10.1093/cvr/cvs285

    CAS  PubMed  Google Scholar 

  139. Schuhmann M, Stegner D, Berna-Erro A, Bittner S, Braun A, Kleinschnitz C, Stoll G, Wiendl H, Meuth S, Nieswandt B (2010) Stromal interaction molecules 1 and 2 are key regulators of autoreactive T cell activation in murine autoimmune central nervous system inflammation. J Immuno(Baltimore 184(3):1536–1542. doi:10.4049/jimmunol.0902161

    CAS  Google Scholar 

  140. Seifert G, Hüttmann K, Binder D, Hartmann C, Wyczynski A, Neusch C, Steinhäuser C (2009) Analysis of astroglial K+ channel expression in the developing hippocampus reveals a predominant role of the Kir4.1 subunit. The Journal of neuroscience : the Official journal of the Society for Neuroscience 29(23):7474–7488. doi:10.1523/jneurosci. 3790-08.2009

    CAS  Google Scholar 

  141. Shah NH, Aizenman E (2014) Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Translational Sroke Research 5(1):38–58. doi:10.1007/s12975-013-0297-7

    CAS  Google Scholar 

  142. Shaw PJ, Qu B, Hoth M, Feske S (2013) Molecular regulation of CRAC channels and their role in lymphocyte function. Cell Mol Life Sci 70(15):2637–2656. doi:10.1007/s00018-012-1175-2

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Shcheglovitov A, Vitko I, Lazarenko RM, Orestes P, Todorovic SM, Perez-Reyes E (2012) Molecular and biophysical basis of glutamate and trace metal modulation of voltage-gated Ca(v)2.3 calcium channels. J Gen Physiol 139(3):219–234. doi:10.1085/jgp.201110699

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Shin DH, Lin H, Zheng H, Kim KS, Kim JY, Chun YS, Park JW, Nam JH, Kim WK, Zhang YH, Kim SJ (2014) HIF-1alpha-Mediated Upregulation of TASK-2 K+ Channels Augments Ca2+ Signaling in Mouse B Cells under Hypoxia. J Immunol. doi:10.4049/jimmunol.1301829

  145. Shuttleworth CW, Weiss JH (2011) Zinc: new clues to diverse roles in brain ischemia. Trends Pharmacol Sci 32(8):480–486. doi:10.1016/j.tips.2011.04.001

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Talley E, Solorzano G, Lei Q, Kim D, Bayliss D (2001) Cns distribution of members of the two-pore-domain (KCNK) potassium channel family. The Journal of neuroscience : the official journal of the Society for Neuroscience 21(19):7491–7505

    CAS  Google Scholar 

  147. Terrenoire C, Lauritzen I, Lesage F, Romey G, Lazdunski M (2001) A TREK-1-like potassium channel in atrial cells inhibited by beta-adrenergic stimulation and activated by volatile anesthetics. Circ Res 89(4):336–342

    CAS  PubMed  Google Scholar 

  148. Tong L, Cai M, Huang Y, Zhang H, Su B, Li Z, Dong H (2014) Activation of K(2)P channel-TREK1 mediates the neuroprotection induced by sevoflurane preconditioning. Br J Anaesth 113(1):157–167. doi:10.1093/bja/aet338

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Varga-Szabo D, Braun A, Kleinschnitz C, Bender M, Pleines I, Pham M, Renne T, Stoll G, Nieswandt B (2008) The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. J Exp Med 205(7):1583–1591. doi:10.1084/jem.20080302

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Wang M, Song J, Xiao W, Yang L, Yuan J, Wang W, Yu Z, Xie M (2012) Changes in lipid-sensitive two-pore domain potassium channel TREK-1 expression and its involvement in astrogliosis following cerebral ischemia in rats. J Mol Neurosci 46(2):384–392. doi:10.1007/s12031-011-9598-z

    CAS  PubMed  Google Scholar 

  151. Wang W, Putra A, Schools GP, Ma B, Chen H, Kaczmarek LK, Barhanin J, Lesage F, Zhou M (2013) The contribution of TWIK-1 channels to astrocyte K(+) current is limited by retention in intracellular compartments. Front Cell Neurosci 7:246. doi:10.3389/fncel.2013.00246

    PubMed Central  PubMed  Google Scholar 

  152. Watkins CS, Mathie A (1996) A non-inactivating K+ current sensitive to muscarinic receptor activation in rat cultured cerebellar granule neurons. J Physiol 491(Pt 2):401–412

    PubMed Central  CAS  PubMed  Google Scholar 

  153. Weber M, Schmitt A, Wischmeyer E, Doring F (2008) Excitability of pontine startle processing neurones is regulated by the two-pore-domain K+ channel TASK-3 coupled to 5-HT2C receptors. Eur J Neurosci 28(5):931–940. doi:10.1111/j.1460-9568.2008.06400.x

    PubMed  Google Scholar 

  154. Wilke B, Linder M, Greifenberg L, Albus A, Kronimus Y, Bünemann M, Leitner M, Oliver D (2014) Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors. Nature communications in press. doi:10.1038/ncomms6540

  155. Wilson HA, Chused TM (1985) Lymphocyte membrane potential and Ca2 + −sensitive potassium channels described by oxonol dye fluorescence measurements. J Cell Physiol 125(1):72–81. doi:10.1002/jcp.1041250110

    CAS  PubMed  Google Scholar 

  156. Woo DH, Han KS, Shim JW, Yoon BE, Kim E, Bae JY, Oh SJ, Hwang EM, Marmorstein AD, Bae YC, Park JY, Lee CJ (2012) TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151(1):25–40. doi:10.1016/j.cell.2012.09.005

    CAS  PubMed  Google Scholar 

  157. Wu L-J, Wu G, Akhavan Sharif M, Baker A, Jia Y, Fahey F, Luo H, Feener E, Clapham D (2012) The voltage-gated proton channel Hv1 enhances brain damage from ischemic stroke. Nat Neurosci 15(4):565–573. doi:10.1038/nn.3059

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Wu X, Liu Y, Chen X, Sun Q, Tang R, Wang W, Yu Z, Xie M (2013) Involvement of TREK-1 activity in astrocyte function and neuroprotection under simulated ischemia conditions. J Mol Neurosci : MN 49(3):499–506. doi:10.1007/s12031-012-9875-5

    CAS  PubMed  Google Scholar 

  159. Wulff H, Calabresi P, Allie R, Yun S, Pennington M, Beeton C, Chandy K (2003) The voltage-gated Kv1.3 K(+) channel in effector memory T cells as new target for MS. J Clin Invest 111(11):1703–1713. doi:10.1172/jci16921

  160. Zheng H, Nam JH, Pang B, Shin DH, Kim JS, Chun YS, Park JW, Bang H, Kim WK, Earm YE, Kim SJ (2009) Identification of the large-conductance background K+ channel in mouse B cells as TREK-2. Am J Physiol Cell Physiol 297(1):C188–C197. doi:10.1152/ajpcell.00052.2009

    CAS  PubMed  Google Scholar 

  161. Zhou M, Xu G, Xie M, Zhang X, Schools GP, Ma L, Kimelberg HK, Chen H (2009) TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices. J Neurosci 29(26):8551–8564. doi:10.1523/JNEUROSCI. 5784-08.2009

    CAS  PubMed  Google Scholar 

  162. Zou B, Flaherty DP, Simpson DS, Maki BE, Miller MR, Shi J, Wu M, McManus OB, Golden JE, Aube J, Li M (2010) ML365: Development of Bis-Amides as Selective Inhibitors of the KCNK3/TASK1 Two Pore Potassium Channel. In: Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD),

  163. Zoupi L, Markoullis K, Kleopa KA, Karagogeos D (2013) Alterations of juxtaparanodal domains in two rodent models of CNS demyelination. Glia 61(8):1236–1249. doi:10.1002/glia.22511

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Heike Blum for excellent work on the graphical illustration. This work was supported by the Interdisciplinary Center for Clinical Research (IZKF) Münster (SEED 03/12 to SB; Meu3/010/12 to SGM), by Deutsche Forschungsgemeinschaft (FOR 1086, TP2 to TB and SGM; Cells-in-Motion Cluster of Excellence (EXC 1003–CiM) to PE, TB, SB and SGM), by Else Kröner-Fresenius-Stiftung (2012_A88 to SB and SGM), and by Innovative Medical Research (IMF) Münster (AL 121108 to PE).

Conflicts of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Ehling.

Additional information

Equal contributions by first authors Petra Ehling and Manuela Cerina and senior authors Sven G. Meuth and Stefan Bittner.

This article is intended to be published as part of the Special Issue on K2P channels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehling, P., Cerina, M., Budde, T. et al. The CNS under pathophysiologic attack—examining the role of K2P channels. Pflugers Arch - Eur J Physiol 467, 959–972 (2015). https://doi.org/10.1007/s00424-014-1664-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1664-2

Keywords

Navigation