Skip to main content

Advertisement

Log in

Activation of endogenously expressed ion channels by active complement in the retinal pigment epithelium

  • Signaling and cell physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Defective regulation of the alternative pathway of the complement system is believed to contribute to damage of retinal pigment epithelial (RPE) cells in age-related macular degeneration. Thus we investigated the effect of complement activation on the RPE cell membrane by analyzing changes in membrane conductance via patch-clamp techniques and Ca2+ imaging. Exposure of human ARPE-19 cells to complement-sufficient normal human serum (NHS) (25 %) resulted in a biphasic increase in intracellular free Ca2+ ([Ca2+]i); an initial peak followed by sustained Ca2+ increase. C5- or C7-depleted sera did not fully reproduce the signal generated by NHS. The initial peak of the Ca2+ response was reduced by sarcoplasmic Ca2+-ATPase inhibitor thapsigargin, L-type channel blockers (R)-(+)-BayK8644 and isradipine, transient-receptor-potential (TRP) channel blocker ruthenium-red and ryanodine receptor blocker dantrolene. The sustained phase was carried by CaV1.3 L-type channels via tyrosine-phosphorylation. Changes in [Ca2+]I were accompanied by an abrupt hyperpolarization, resulting from a transient increase in membrane conductance, which was absent under extracellular Ca2+- or K+-free conditions and blocked by (R)-(+)-BayK8644 or paxilline, a maxiK channel inhibitor. Single-channel recordings confirmed the contribution of maxiK channels. Primary porcine RPE cells responded to NHS in a comparable manner. Pre-incubation with NHS reduced H2O2-induced cell death. In summary, in a concerted manner, C3a, C5a and sC5b-9 increased [Ca2+]i by ryanodine-receptor-dependent activation of L-type channels in addition to maxi-K channels and TRP channels absent from any insertion of a lytic pore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anderson DH, Radeke MJ, Gallo NB et al (2010) The pivotal role of the complement system in aging and age-related macular degeneration: Hypothesis re-visited. Prog Retin Eye Res 29:95–112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Bandyopadhyay M, Rohrer B (2012) Matrix metalloproteinase activity creates pro-angiogenic environment in primary human retinal pigment epithelial cells exposed to complement. Invest Ophthalmol Vis Sci 53:1953–1961. doi:10.1167/iovs. 11-8638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bezanilla F, Armstrong CM (1977) Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol 70:549–566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Campbell AK, Daw RA, Hallett MB, Luzio JP (1981) Direct measurement of the increase in intracellular free calcium ion concentration in response to the action of complement. Biochem J 194:551–560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Carney DF, Lang TJ, Shin ML (1990) Multiple signal messengers generated by terminal complement complexes and their role in terminal complement complex elimination. J Immunol 145:623–629

    CAS  PubMed  Google Scholar 

  6. Cordeiro S, Seyler S, Stindl J et al (2010) Heat-sensitive TRPV channels in retinal pigment epithelial cells: regulation of VEGF-A secretion. Invest Ophthalmol Vis Sci 51:6001–6008. doi:10.1167/iovs. 09-4720

    Article  PubMed  Google Scholar 

  7. Ebrahimi KB, Fijalkowski N, Cano M, Handa JT (2013) Decreased membrane complement regulators in the retinal pigmented epithelium contributes to age-related macular degeneration. J Pathol 229:729–742. doi:10.1002/path.4128

    Article  CAS  PubMed  Google Scholar 

  8. Fett AL, Hermann MM, Muether PS et al (2012) Immunohistochemical localization of complement regulatory proteins in the human retina. Histol Histopathol 27:357–364

    PubMed  Google Scholar 

  9. Gómez NM, Tamm ER, Strauβ O (2013) Role of bestrophin-1 in store-operated calcium entry in retinal pigment epithelium. Pflugers Arch 465:481–495. doi:10.1007/s00424-012-1181-0

    Article  PubMed  Google Scholar 

  10. Hageman GS, Anderson DH, Johnson LV et al (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 102:7227–7232. doi:10.1073/pnas.0501536102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Hageman GS, Luthert PJ, Victor Chong NH et al (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20:705–732

    Article  CAS  PubMed  Google Scholar 

  12. Halperin JA, Brugnara C, Nicholson-Weller A (1989) Ca2+−activated K+efflux limits complement-mediated lysis of human erythrocytes. J Clin Invest 83:1466–1471. doi:10.1172/JCI114039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Halperin JA, Nicholson-Weller A, Brugnara C, Tosteson DC (1988) Complement induces a transient increase in membrane permeability in unlysed erythrocytes. J Clin Invest 82:594–600. doi:10.1172/JCI113637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Halperin J, Taratuska A, Rynkiewicz M, Nicholson-Weller A (1993) Transient changes in erythrocyte membrane permeability are induced by sublytic amounts of the complement membrane attack complex (C5b-9). Blood 81:200–205

    CAS  PubMed  Google Scholar 

  15. Holtkamp GM, De Vos AF, Peek R, Kijlsta A (1999) Analysis of the secretion pattern of monocyte chemotactic protein-1 (MCP-1) and transforming growth factor-beta 2 (TGF-beta2) by human retinal pigment epithelial cells. Clin ExpImmunol 118:35–40

    CAS  Google Scholar 

  16. Ichinose M, Hara N, Sawada M, Maeno T (1992) Induction of two K+currents by complement component C5a in mouse macrophages. Biochim Biophys Acta - Biomembr 1111:165–170

    Article  CAS  Google Scholar 

  17. Ilschner S, Nolte C, Kettenmann H (1996) Complement factor C5a and epidermal growth factor trigger the activation of outward potassium currents in cultured murine microglia. Neuroscience 73:1109–1120

    Article  CAS  PubMed  Google Scholar 

  18. Joseph K, Kulik L, Coughlin B et al (2013) Oxidative stress sensitizes retinal pigmented epithelial (RPE) cells to complement-mediated injury in a natural antibody-, lectin pathway-, and phospholipid epitope-dependent manner. J Biol Chem 288:12753–12765. doi:10.1074/jbc.M112.421891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Juel HB, Faber C, Udsen MS et al (2012) Chemokine expression in retinal pigment epithelial ARPE-19 cells in response to coculture with activated T cells. Invest Ophthalmol Vis Sci 53:8472–8480. doi:10.1167/iovs. 12-9963

    Article  CAS  PubMed  Google Scholar 

  20. Kim YH, He S, Kase S et al (2009) Regulated secretion of complement factor H by RPE and its role in RPE migration. Graefe’s Arch Clin Exp Ophthalmol 247:651–659. doi:10.1007/s00417-009-1049-y

    Article  CAS  Google Scholar 

  21. Kolde HJ, Deubel R (1986) Development of a rapid kinetic assay for the function of the classical pathway of the complement system and for C2 and C4. J Clin Lab Immunol 21:201–207

    CAS  PubMed  Google Scholar 

  22. Kunchithapautham K, Bandyopadhyay M, Dahrouj M et al (2012) Sublytic membrane-attack-complex activation and VEGF secretion in retinal pigment epithelial cells. Adv Exp Med Biol 723:23–30. doi:10.1007/978-1-4614-0631-0_4

    Article  CAS  PubMed  Google Scholar 

  23. Kunchithapautham K, Rohrer B (2011) Sublytic membrane-attack-complex (MAC) activation alters regulated rather than constitutive vascular endothelial growth factor (VEGF) secretion in retinal pigment epithelium monolayers. J Biol Chem 286:23717–23724. doi:10.1074/jbc.M110.214593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Mergler S, Strauss O (2002) Stimulation of L-type Ca2+ channels by increase of intracellular InsP3 in rat retinal pigment epithelial cells. Exp Eye Res 74:29–40

    Article  CAS  PubMed  Google Scholar 

  25. Möller T, Nolte C, Burger R et al (1997) Mechanisms of C5a and C3a Complement Fragment-Induced [Ca2+]i Signaling in Mouse Microglia. J Neurosci 17:615–624

    PubMed  Google Scholar 

  26. Morgan BP, Campbell AK (1985) The recovery of human polymorphonuclear leucocytes from sublytic complement attack is mediated by changes in intracellular free calcium. Biochem J 231:205–208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Newsholme P, Adogu AA, Soos MA, Hales CN (1993) Complement-induced Ca2+ influx in cultured fibroblasts is decreased by the calcium-channel antagonist nifedipine or by some bivalent inorganic cations. Biochem J 295(Pt 3):773–779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Nolte C, Möller T, Walter T, Kettenmann H (1996) Complement 5a controls motility of murine microglial cells in vitro via activation of an inhibitory G-protein and the rearrangement of the actin cytoskeleton. Neuroscience 73:1091–1107

    Article  CAS  PubMed  Google Scholar 

  29. Nozaki M, Raisler BJ, Sakurai E et al (2006) Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci U S A 103:2328–2333. doi:10.1073/pnas.0408835103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Oiki S, Okada Y (1988) C1q induces chemotaxis and K+conductance activation coupled to increased cytosolic Ca2+ in mouse fibroblasts. J Immunol 141:3177–3185

    CAS  PubMed  Google Scholar 

  31. Oiki S, Ueda S, Okada Y (1985) Increases in cytosolic free Ca2+ induced by ATP, complement and β-lipoprotein in mouse L fibroblasts. Biochem Biophys Res Commun 132:290–298

    Article  CAS  PubMed  Google Scholar 

  32. Park CC, Shin ML, Simard JM (1997) The complement membrane attack complex and the bystander effect in cerebral vasospasm. J Neurosurg 87:294–300. doi:10.3171/jns.1997.87.2.0294

    Article  CAS  PubMed  Google Scholar 

  33. Planck S, Dang T, Graves D et al (1992) Retinal pigment epithelial cells secrete interleukin-6 in response to interleukin-1. Invest Ophthalmol Vis Sci 33:78–82

    CAS  PubMed  Google Scholar 

  34. Sacks S, Morgan P, Khandhadia S et al (2012) Age-related macular degeneration and the complement system. Immunobiology 217:127–146

    Article  Google Scholar 

  35. Seeger W, Suttorp N, Hellwig A, Bhakdi S (1986) Noncytolytic terminal complement complexes may serve as calcium gates to elicit leukotriene B4 generation in human polymorphonuclear leukocytes. J Immunol 137:1286–1293

    CAS  PubMed  Google Scholar 

  36. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881. doi:10.1152/physrev.00021.2004

    Article  CAS  PubMed  Google Scholar 

  37. Taylor A, Bhutto I, Lutty G (2012) Understanding age-related macular degeneration (AMD): Relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Aspects Med 33:295–317

    Article  Google Scholar 

  38. Tegla CA, Cudrici C, Rozycka M et al (2011) C5b-9-activated, Kv1.3 channels mediateoligodendrocyte cell cycle activation and dedifferentiation. Exp Mol Pathol 91:335–345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Thurman JM, Holers VM (2006) The central role of the alternative complement pathway in human disease. J Immunol 176:1305–1310

    Article  CAS  PubMed  Google Scholar 

  40. Thurman JM, Renner B, Kunchithapautham K et al (2009) Oxidative stress renders retinal pigment epithelial cells susceptible to complement-mediated injury. J Biol Chem 284:16939–16947. doi:10.1074/jbc.M808166200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Triantafilou K, Hughes TR, Triantafilou M, Morgan BP (2013) The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J Cell Sci 126:2903–2913. doi:10.1242/jcs.124388

    Article  CAS  PubMed  Google Scholar 

  42. Wimmers S, Halsband C, Seyler S, Milenkovic V, Strauss O (2008) Voltage-dependent Ca2+ channels, not ryanodine receptors, activate Ca2+−dependent BK potassium channels in human retinal pigment epithelial cells. Mol Vis 14:2340–2348

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Witmer AN, Vrensen GFJM, Van Noorden CJF, Schlingemann RO (2003) Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res 22:1–29

    Article  CAS  PubMed  Google Scholar 

  44. Zamiri P, Sugita S, Streilein JW (2007) Immunosuppressive properties of the pigmented epithelial cells and the subretinal space. ChemImmunol Allergy 92:86–93. doi:10.1159/000099259

    Article  CAS  Google Scholar 

  45. Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9:729–740. doi:10.1038/nri2620

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Andrea Dannullis, Elfriede Eckert and Renate Föckler for expert technical assistance. Financial support: OS: Novartis Professorship; BR: in part by the National Institutes of Health (NIH) (R01EY019320), a Department for Veterans Affairs merit award RX000444 and an unrestricted grant to MUSC from Research to Prevent Blindness (RPB), New York, NY; CS: Deutsche Forschungsgemeinschaft (DFG) SK46/2-1, SK46/2-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Strauß.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genewsky, A., Jost, I., Busch, C. et al. Activation of endogenously expressed ion channels by active complement in the retinal pigment epithelium. Pflugers Arch - Eur J Physiol 467, 2179–2191 (2015). https://doi.org/10.1007/s00424-014-1656-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1656-2

Keywords

Navigation