Skip to main content
Log in

The Cav1.2 N terminus contains a CaM kinase site that modulates channel trafficking and function

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The L-type voltage-gated calcium channel Cav1.2 and the calcium-activated CaM kinase cascade both regulate excitation transcription coupling in the brain. CaM kinase is known to associate with the C terminus of Cav1.2 in a region called the PreIQ-IQ domain, which also binds multiple calmodulin molecules. Here we identify and characterize a second CaMKII binding site in the N terminus of Cav1.2 that is formed by a stretch of four amino residues (cysteine–isoleucine–serine–isoleucine) and which regulates channel expression and function. By using live cell imaging of tsA-201 cells we show that GFP fusion constructs of the CaMKII binding region, termed N2B-II co-localize with mCherry-CaMKII. Mutating CISI to AAAA ablates binding to and colocalization with CaMKII. Cav1.2-AAAA channels show reduced cell surface expression in tsA-201 cells, but interestingly, display an increase in channel function that offsets the trafficking deficit. Altogether our data reveal that the proximal N terminus of Cav1.2 contains a CaMKII binding region which contributes to channel surface expression and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CaMK:

Calmodulin kinase

CaMKK:

Calmodulin kinase kinase

CaM:

Calmodulin

CDF:

Calcium-dependent facilitation

CDI:

Calcium-dependent inactivation

VDF:

Voltage-dependent facilitation

References

  1. Altier C, Dubel SJ, Barrere C, Jarvis SE, Stotz SC, Spaetgens RL, Scott JD, Cornet V, De Waard M, Zamponi GW, Nargeot J, Bourinet E (2002) Trafficking of L-type calcium channels mediated by the postsynaptic scaffolding protein AKAP79. J Biol Chem 277:33598–33603

    Article  CAS  PubMed  Google Scholar 

  2. Bading H, Ginty DD, Greenberg ME (1993) Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260:181–186

    Article  CAS  PubMed  Google Scholar 

  3. Ben Johny M, Yang PS, Bazzazi H, Yue DT (2013) Dynamic switching of calmodulin interactions underlies Ca2+ regulation of CaV1.3 channels. Nat Commun 4:1717

    Article  PubMed  Google Scholar 

  4. Blaeser F, Sanders MJ, Truong N, Ko S, Wu LJ, Wozniak DF, Fanselow MS, Zhuo M, Chatila TA (2006) Long-term memory deficits in Pavlovian fear conditioning in Ca2+/calmodulin kinase kinase alpha-deficient mice. Mol Cell Biol 26:9105–9115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bourinet E, Charnet P, Tomlinson WJ, Stea A, Snutch TP, Nargeot J (1994) Voltage-dependent facilitation of a neuronal alpha 1C L-type calcium channel. EMBO J 13:5032–5039

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3

  7. Cens T, Mangoni ME, Richard S, Nargeot J, Charnet P (1996) Coexpression of the beta2 subunit does not induce voltage-dependent facilitation of the class C L-type Ca channel. Pflugers Arch 431:771–774

    CAS  PubMed  Google Scholar 

  8. Christel C, Lee A (2012) Ca2+-dependent modulation of voltage-gated Ca2+ channels. Biochim Biophys Acta 1820:1243–1252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Cibulsky SM, Sather WA (2003) Control of ion conduction in L-type Ca2+ channels by the concerted action of S5–6 regions. Biophys J 84:1709–1719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  CAS  PubMed  Google Scholar 

  11. de Maria CD, Soong TW, Alseikhan BA, Alvania RS, Yue DT (2001) Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature 411:484–489

    Article  Google Scholar 

  12. Dick IE, Tadross MR, Liang H, Tay LH, Yang W, Yue DT (2008) A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels. Nature 451:830–834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Dirksen RT, Nakai J, Gonzalez A, Imoto K, Beam KG (1997) The S5–S6 linker of repeat I is a critical determinant of L-type Ca2+ channel conductance. Biophys J 73:1402–1409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Doering CJ, Hamid J, Simms B, McRory JE, Zamponi GW (2005) Cav1.4 encodes a calcium channel with low open probability and unitary conductance. Biophys J 89:3042–3048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Dolmetsch RE, Pajvani U, Fife K, Spotts JM, Greenberg ME (2001) Signaling to the nucleus by an L-type calcium channel–calmodulin complex through the MAP kinase pathway. Science 294:333–339

    Article  CAS  PubMed  Google Scholar 

  16. Graef IA, Mermelstein PG, Stankunas K, Neilson JR, Deisseroth K, Tsien RW, Crabtree GR (1999) L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature 401:703–708

    Article  CAS  PubMed  Google Scholar 

  17. Grueter CE, Abiria SA, Dzhura I, Wu Y, Ham AJ, Mohler PJ, Anderson ME, Colbran RJ (2006) L-type Ca2+ channel facilitation mediated by phosphorylation of the beta subunit by CaMKII. Mol Cell 23:641–650

    Article  CAS  PubMed  Google Scholar 

  18. Hamid J, Nelson D, Spaetgens R, Dubel SJ, Snutch TP, Zamponi GW (1999) Identification of an integration center for cross-talk between protein kinase C and G protein modulation of N-type calcium channels. J Biol Chem 274:6195–6202

    Article  CAS  PubMed  Google Scholar 

  19. Hofer GF, Hohenthanner K, Baumgartner W, Groschner K, Klugbauer N, Hofmann F, Romanin C (1997) Intracellular Ca2+ inactivates L-type Ca2+ channels with a Hill coefficient of approximately 1 and an inhibition constant of approximately 4 microM by reducing channel's open probability. Biophys J 73:1857–1865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hu H, Marban E (1998) Isoform-specific inhibition of L-type calcium channels by dihydropyridines is independent of isoform-specific gating properties. Mol Pharmacol 53:902–907

    CAS  PubMed  Google Scholar 

  21. Hudmon A, Lebel E, Roy H, Sik A, Schulman H, Waxham MN, De Koninck P (2005) A mechanism for Ca2+/calmodulin-dependent protein kinase II clustering at synaptic and nonsynaptic sites based on self-association. J Neurosci 25:6971–6983

    Article  CAS  PubMed  Google Scholar 

  22. Hudmon A, Schulman H, Kim J, Maltez JM, Tsien RW, Pitt GS (2005) CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. J Cell Biol 171:537–547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Jeon D, Kim S, Chetana M, Jo D, Ruley HE, Lin SY, Rabah D, Kinet JP, Shin HS (2010) Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC. Nat Neurosci 13:482–488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kanevsky N, Dascal N (2006) Regulation of maximal open probability is a separable function of Ca(v)beta subunit in L-type Ca2+ channel, dependent on NH2 terminus of alpha1C (Ca(v)1.2alpha). J Gen Physiol 128:15–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kepplinger KJ, Kahr H, Forstner G, Sonnleitner M, Schindler H, Schmidt T, Groschner K, Soldatov NM, Romanin C (2000) A sequence in the carboxy-terminus of the alpha(1C) subunit important for targeting, conductance and open probability of L-type Ca(2+) channels. FEBS Lett 477:161–169

    Article  CAS  PubMed  Google Scholar 

  26. Langwieser N, Christel CJ, Kleppisch T, Hofmann F, Wotjak CT, Moosmang S (2012) Homeostatic switch in hebbian plasticity and fear learning after sustained loss of Cav1.2 calcium channels. J Neurosci 30:8367–8375

    Article  Google Scholar 

  27. Lee TS, Karl R, Moosmang S, Lenhardt P, Klugbauer N, Hofmann F, Kleppisch T, Welling A (2006) Calmodulin kinase II is involved in voltage-dependent facilitation of the L-type Cav1.2 calcium channel: identification of the phosphorylation sites. J Biol Chem 281:25560–25567

    Article  CAS  PubMed  Google Scholar 

  28. Lee A, Zhou H, Scheuer T, Catterall WA (2003) Molecular determinants of Ca(2+)/calmodulin-dependent regulation of Ca(v)2.1 channels. Proc Natl Acad Sci U S A 100:16059–16064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Li J, Marionneau C, Koval O, Zingman L, Mohler PJ, Nerbonne JM, Anderson ME (2007) Calmodulin kinase II inhibition enhances ischemic preconditioning by augmenting ATP-sensitive K+ current. Channels (Austin) 1:387–394

    Article  Google Scholar 

  30. Mizuno K, Ris L, Sanchez-Capelo A, Godaux E, Giese KP (2006) Ca2+/calmodulin kinase kinase alpha is dispensable for brain development but is required for distinct memories in male, though not in female, mice. Mol Cell Biol 26:9094–9104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Perez-Reyes E, Castellano A, Kim HS, Bertrand P, Baggstrom E, Lacerda AE, Wei XY, Birnbaumer L (1992) Cloning and expression of a cardiac/brain beta subunit of the L-type calcium channel. J Biol Chem 267:1792–1797

    CAS  PubMed  Google Scholar 

  32. Platano D, Qin N, Noceti F, Birnbaumer L, Stefani E, Olcese R (2000) Expression of the alpha(2)delta subunit interferes with prepulse facilitation in cardiac L-type calcium channels. Biophys J 78:2959–2972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Schmid R, Seydl K, Baumgartner W, Groschner K, Romanin C (1995) Trypsin increases availability and open probability of cardiac L-type Ca2+ channels without affecting inactivation induced by Ca2+. Biophys J 69:1847–1857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Simms BA, Souza IA, Zamponi GW (2013) A novel calmodulin site in the Cav1.2 N-terminus regulates calcium-dependent inactivation. Pflugers Arch. doi:10.1007/s00424-013-1423-9

    PubMed  Google Scholar 

  35. Simms BA, Zamponi GW (2014) Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 82:24–45

    Article  CAS  PubMed  Google Scholar 

  36. Sinnegger MJ, Wang Z, Grabner M, Hering S, Striessnig J, Glossmann H, Mitterdorfer J (1997) Nine L-type amino acid residues confer full 1,4-dihydropyridine sensitivity to the neuronal calcium channel alpha1A subunit. Role of L-type Met1188. J Biol Chem 272:27686–27693

    Article  CAS  PubMed  Google Scholar 

  37. Varga AW, Yuan LL, Anderson AE, Schrader LA, Wu GY, Gatchel JR, Johnston D, Sweatt JD (2004) Calcium-calmodulin-dependent kinase II modulates Kv4.2 channel expression and upregulates neuronal A-type potassium currents. J Neurosci 24:3643–3654

    Article  CAS  PubMed  Google Scholar 

  38. Wagner S, Hacker E, Grandi E, Weber SL, Dybkova N, Sossalla S, Sowa T, Fabritz L, Kirchhof P, Bers DM, Maier LS (2009) Ca/calmodulin kinase II differentially modulates potassium currents. Circ Arrhythm Electrophysiol 2:285–294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Wei X, Neely A, Olcese R, Lang W, Stefani E, Birnbaumer L (1996) Increase in Ca2+ channel expression by deletions at the amino terminus of the cardiac alpha 1C subunit. Receptors Channels 4:205-15

  40. Wheeler DG, Barrett CF, Groth RD, Safa P, Tsien RW (2008) CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation–transcription coupling. J Cell Biol 183:849–863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Wu GY, Deisseroth K, Tsien RW (2001) Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A 98:2808–2813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Wu Y, Dzhura I, Colbran RJ, Anderson ME (2001) Calmodulin kinase and a calmodulin-binding 'IQ' domain facilitate L-type Ca2+ current in rabbit ventricular myocytes by a common mechanism. J Physiol 535:679–687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Yang J, Ellinor PT, Sather WA, Zhang JF, Tsien RW (1993) Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366:158–161

    Article  CAS  PubMed  Google Scholar 

  44. Yatani A, Bahinski A, Wakamori M, Tang S, Mori Y, Kobayashi T, Schwartz A (1994) Alteration of channel characteristics by exchange of pore-forming regions between two structurally related Ca2+ channels. Mol Cell Biochem 140:93–102

    Article  CAS  PubMed  Google Scholar 

  45. Yoshino M, Someya T, Nishio A, Yazawa K, Usuki T, Yabu H (1989) Multiple types of voltage-dependent Ca channels in mammalian intestinal smooth muscle cells. Pflugers Arch 414:401–409

    Article  CAS  PubMed  Google Scholar 

  46. Zuhlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H (1999) Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399:159–162

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Natural Sciences and Engineering Research Council. BAS is supported by a studentship from Alberta Innovates-Health Solutions (AI-HS). IAS is supported by a postdoctoral fellowship from Mitacs Elevate. GWZ is an AI-HS Scientist and a Canada Research Chair.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Standards

All experiments performed in this manuscript comply with the laws of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald W. Zamponi.

Additional information

B.A. Simms and I.A. Souza contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 270 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simms, B.A., Souza, I.A., Rehak, R. et al. The Cav1.2 N terminus contains a CaM kinase site that modulates channel trafficking and function. Pflugers Arch - Eur J Physiol 467, 677–686 (2015). https://doi.org/10.1007/s00424-014-1538-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1538-7

Keywords

Navigation