Skip to main content

Advertisement

Log in

Changing world of neutrophils

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Neutrophilic granulocytes are no longer regarded as cells involved only in the last phase of the immune response with one single—although vitally important—task: engulfing and killing of microorganisms marked by immunoglobulin or complement fragments. In recent years, it was shown that neutrophils are actively involved in initiation and organization of the adaptive immune response by releasing various cytokines, interacting with all major types of immune cells, regulating their own lifespan, and participating in the anaphylactic reaction and in several classically nonimmune functions such as hemostasis, atherogenesis, and even insulin resistance. The antibacterial effect is no longer restricted to killing and destruction of microorganisms sequestered in the phagosomal space. Bacteriostasis also occurs at certain locations of the extracellular space, by formation of neutrophil extracellular traps (NETs) that were shown in the last 2 years to have a significant role in the prevention of dissemination of microorganisms. Extracellular vesicles represent a recently discovered form of intercellular communication carried out both by lipids, proteins, and nucleic acids. In this review, we also summarize the role of neutrophil-derived extracellular vesicles in modifying the function of other cell types as well as their direct antibacterial effect that differs significantly from mechanisms applied either by neutrophils or by the NETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abadie V, Badell E, Douillard P, Ensergueix D, Leenen PJ, Tanguy M, Fiette L, Saeland S, Gicquel B, Winter N (2005) Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood 106(5):1843–1850

    CAS  PubMed  Google Scholar 

  2. Abi Abdallah DS, Egan CE, Butcher BA, Denkers EY (2011) Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation. Int Immunol 23(5):317–326. doi:10.1093/intimm/dxr007

    CAS  PubMed  Google Scholar 

  3. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10(5):619–624. doi:10.1038/ncb1725

    CAS  PubMed  Google Scholar 

  4. Andrei C, Dazzi C, Lotti L, Torrisi MR, Chimini G, Rubartelli A (1999) The secretory route of the leaderless protein interleukin 1beta involves exocytosis of endolysosome-related vesicles. Mol Biol Cell 10(5):1463–1475

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Barlow PG, Li Y, Wilkinson TS, Bowdish DM, Lau YE, Cosseau C, Haslett C, Simpson AJ, Hancock RE, Davidson DJ (2006) The human cationic host defense peptide LL-37 mediates contrasting effects on apoptotic pathways in different primary cells of the innate immune system. J Leukoc Biol 80(3):509–520. doi:10.1189/jlb.1005560

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Beauvillain C, Cunin P, Doni A, Scotet M, Jaillon S, Loiry ML, Magistrelli G, Masternak K, Chevailler A, Delneste Y, Jeannin P (2011) CCR7 is involved in the migration of neutrophils to lymph nodes. Blood 117(4):1196–1204. doi:10.1182/blood-2009-11-254490

    CAS  PubMed  Google Scholar 

  7. Beauvillain C, Delneste Y, Scotet M, Peres A, Gascan H, Guermonprez P, Barnaba V, Jeannin P (2007) Neutrophils efficiently cross-prime naive T cells in vivo. Blood 110(8):2965–2973. doi:10.1182/blood-2006-12-063826

    CAS  PubMed  Google Scholar 

  8. Berckmans RJ, Nieuwland R, Tak PP, Boing AN, Romijn FP, Kraan MC, Breedveld FC, Hack CE, Sturk A (2002) Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-dependent mechanism. Arthritis Rheum 46(11):2857–2866. doi:10.1002/art.10587

    CAS  PubMed  Google Scholar 

  9. Bhatnagar S, Shinagawa K, Castellino FJ, Schorey JS (2007) Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood 110(9):3234–3244. doi:10.1182/blood-2007-03-079152

    CAS  PubMed  Google Scholar 

  10. Bianchi M, Hakkim A, Brinkmann V, Siler U, Seger RA, Zychlinsky A, Reichenbach J (2009) Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 114(13):2619–2622. doi:10.1182/blood-2009-05-221606

    CAS  PubMed  Google Scholar 

  11. Borregaard N, Sorensen OE, Theilgaard-Monch K (2007) Neutrophil granules: a library of innate immunity proteins. Trends Immunol 28(8):340–345. doi:10.1016/j.it.2007.06.002

    CAS  PubMed  Google Scholar 

  12. Bournazou I, Mackenzie KJ, Duffin R, Rossi AG, Gregory CD (2010) Inhibition of eosinophil migration by lactoferrin. Immunol Cell Biol 88(2):220–223. doi:10.1038/icb.2009.86

    CAS  PubMed  Google Scholar 

  13. Bournazou I, Pound JD, Duffin R, Bournazos S, Melville LA, Brown SB, Rossi AG, Gregory CD (2009) Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin. J Clin Invest 119(1):20–32. doi:10.1172/JCI36226

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Bratton DL, Henson PM (2011) Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol 32(8):350–357. doi:10.1016/j.it.2011.04.009

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535. doi:10.1126/science.1092385 303/5663/1532

    CAS  PubMed  Google Scholar 

  16. Brinkmann V, Zychlinsky A (2012) Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol 198(5):773–783. doi:10.1083/jcb.201203170

    CAS  PubMed  Google Scholar 

  17. Buchanan JT, Simpson AJ, Aziz RK, Liu GY, Kristian SA, Kotb M, Feramisco J, Nizet V (2006) DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol 16(4):396–400. doi:10.1016/j.cub.2005.12.039

    CAS  PubMed  Google Scholar 

  18. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78(9):838–848. doi:10.1038/ki.2010.278

    CAS  PubMed  Google Scholar 

  19. Cassatella MA (1995) The production of cytokines by polymorphonuclear neutrophils. Immunol Today 16(1):21–26

    CAS  PubMed  Google Scholar 

  20. Cassatella MA (2003) The neutrophil: an emerging regulator of inflammatory and immune response. Karger, Basel

    Google Scholar 

  21. Chtanova T, Schaeffer M, Han SJ, van Dooren GG, Nollmann M, Herzmark P, Chan SW, Satija H, Camfield K, Aaron H, Striepen B, Robey EA (2008) Dynamics of neutrophil migration in lymph nodes during infection. Immunity 29(3):487–496. doi:10.1016/j.immuni.2008.07.012

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19(2):43–51. doi:10.1016/j.tcb.2008.11.003

    CAS  PubMed  Google Scholar 

  23. Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A (1992) Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 80(8):2012–2020

    CAS  PubMed  Google Scholar 

  24. Costantini C, Calzetti F, Perbellini O, Micheletti A, Scarponi C, Lonardi S, Pelletier M, Schakel K, Pizzolo G, Facchetti F, Vermi W, Albanesi C, Cassatella MA (2011) Human neutrophils interact with both 6-sulfo LacNAc+ DC and NK cells to amplify NK-derived IFN{gamma}: role of CD18, ICAM-1, and ICAM-3. Blood 117(5):1677–1686. doi:10.1182/blood-2010-06-287243

    CAS  PubMed  Google Scholar 

  25. Dalli J, Serhan CN (2012) Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood 120(15):e60–e72. doi:10.1182/blood-2012-04-423525

    CAS  PubMed  Google Scholar 

  26. Daniel L, Fakhouri F, Joly D, Mouthon L, Nusbaum P, Grunfeld JP, Schifferli J, Guillevin L, Lesavre P, Halbwachs-Mecarelli L (2006) Increase of circulating neutrophil and platelet microparticles during acute vasculitis and hemodialysis. Kidney Int 69(8):1416–1423. doi:10.1038/sj.ki.5000306

    CAS  PubMed  Google Scholar 

  27. Darbousset R, Thomas GM, Mezouar S, Frere C, Bonier R, Mackman N, Renne T, Dignat-George F, Dubois C, Panicot-Dubois L (2012) Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood 120(10):2133–2143. doi:10.1182/blood-2012-06-437772

    CAS  PubMed  Google Scholar 

  28. Deban L, Russo RC, Sironi M, Moalli F, Scanziani M, Zambelli V, Cuccovillo I, Bastone A, Gobbi M, Valentino S, Doni A, Garlanda C, Danese S, Salvatori G, Sassano M, Evangelista V, Rossi B, Zenaro E, Constantin G, Laudanna C, Bottazzi B, Mantovani A (2010) Regulation of leukocyte recruitment by the long pentraxin PTX3. Nat Immunol 11(4):328–334. doi:10.1038/ni.1854

    CAS  PubMed  Google Scholar 

  29. Dewalt RI, Petkovich DA, Zahrt AN, Bruns HA, McDowell SA (2013) Host cell invasion by Staphylococcus aureus stimulates the shedding of microvesicles. Biochem Biophys Res Commun. doi:10.1016/j.bbrc.2013.01.122

    PubMed  Google Scholar 

  30. Dinauer MC (2007) Disorders of neutrophil function: an overview. Methods Mol Biol 412:489–504. doi:10.1007/978-1-59745-467-4_30

    CAS  PubMed  Google Scholar 

  31. Doring Y, Drechsler M, Wantha S, Kemmerich K, Lievens D, Vijayan S, Gallo RL, Weber C, Soehnlein O (2012) Lack of neutrophil-derived CRAMP reduces atherosclerosis in mice. Circ Res 110(8):1052–1056. doi:10.1161/CIRCRESAHA.112.265868

    PubMed  Google Scholar 

  32. Drechsler M, Megens RT, van Zandvoort M, Weber C, Soehnlein O (2010) Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 122(18):1837–1845. doi:10.1161/CIRCULATIONAHA.110.961714

    CAS  PubMed  Google Scholar 

  33. Duarte TA, Noronha-Dutra AA, Nery JS, Ribeiro SB, Pitanga TN, Lapa ESJR, Arruda S, Boechat N (2012) Mycobacterium tuberculosis-induced neutrophil ectosomes decrease macrophage activation. Tuberculosis (Edinb) 92(3):218–225. doi:10.1016/j.tube.2012.02.007

    CAS  Google Scholar 

  34. Eken C, Gasser O, Zenhaeusern G, Oehri I, Hess C, Schifferli JA (2008) Polymorphonuclear neutrophil-derived ectosomes interfere with the maturation of monocyte-derived dendritic cells. J Immunol 180(2):817–824

    CAS  PubMed  Google Scholar 

  35. Eken C, Martin PJ, Sadallah S, Treves S, Schaller M, Schifferli JA (2010) Ectosomes released by polymorphonuclear neutrophils induce a MerTK-dependent anti-inflammatory pathway in macrophages. J Biol Chem 285(51):39914–39921. doi:10.1074/jbc.M110.126748

    CAS  PubMed  Google Scholar 

  36. Eken C, Sadallah S, Martin PJ, Treves S, Schifferli JA (2013) Ectosomes of polymorphonuclear neutrophils activate multiple signaling pathways in macrophages. Immunobiology 218(3):382–392. doi:10.1016/j.imbio.2012.05.021

    CAS  PubMed  Google Scholar 

  37. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241. doi:10.1083/jcb.200606027

    CAS  PubMed  Google Scholar 

  38. Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, Punaro M, Baisch J, Guiducci C, Coffman RL, Barrat FJ, Banchereau J, Pascual V (2011) Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 3(73):73ra20. doi:10.1126/scitranslmed.3001201

    PubMed Central  PubMed  Google Scholar 

  39. Gasser O, Hess C, Miot S, Deon C, Sanchez JC, Schifferli JA (2003) Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Exp Cell Res 285(2):243–257

    CAS  PubMed  Google Scholar 

  40. Gasser O, Schifferli JA (2004) Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 104(8):2543–2548. doi:10.1182/blood-2004-01-0361

    CAS  PubMed  Google Scholar 

  41. Gonzalez-Cano P, Mondragon-Flores R, Sanchez-Torres LE, Gonzalez-Pozos S, Silva-Miranda M, Monroy-Ostria A, Estrada-Parra S, Estrada-Garcia I (2010) Mycobacterium tuberculosis H37Rv induces ectosome release in human polymorphonuclear neutrophils. Tuberculosis (Edinb) 90(2):125–134. doi:10.1016/j.tube.2010.01.002

    CAS  Google Scholar 

  42. Gyorgy B, Modos K, Pallinger E, Paloczi K, Pasztoi M, Misjak P, Deli MA, Sipos A, Szalai A, Voszka I, Polgar A, Toth K, Csete M, Nagy G, Gay S, Falus A, Kittel A, Buzas EI (2011) Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood 117(4):e39–e48. doi:10.1182/blood-2010-09-307595

    CAS  PubMed  Google Scholar 

  43. Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, Laszlo V, Pallinger E, Pap E, Kittel A, Nagy G, Falus A, Buzas EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68(16):2667–2688. doi:10.1007/s00018-011-0689-3

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Hakkim A, Furnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, Herrmann M, Voll RE, Zychlinsky A (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA 107(21):9813–9818. doi:10.1073/pnas.0909927107

    CAS  PubMed  Google Scholar 

  45. Hess C, Sadallah S, Hefti A, Landmann R, Schifferli JA (1999) Ectosomes released by human neutrophils are specialized functional units. J Immunol 163(8):4564–4573

    CAS  PubMed  Google Scholar 

  46. Holland SM (2010) Chronic granulomatous disease. Clin Rev Allergy Immunol 38(1):3–10. doi:10.1007/s12016-009-8136-z

    CAS  PubMed  Google Scholar 

  47. Hong Y, Eleftheriou D, Hussain AA, Price-Kuehne FE, Savage CO, Jayne D, Little MA, Salama AD, Klein NJ, Brogan PA (2012) Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil microparticles. J Am Soc Nephrol 23(1):49–62. doi:10.1681/ASN.2011030298

    CAS  PubMed  Google Scholar 

  48. Houghton AM, Rzymkiewicz DM, Ji H, Gregory AD, Egea EE, Metz HE, Stolz DB, Land SR, Marconcini LA, Kliment CR, Jenkins KM, Beaulieu KA, Mouded M, Frank SJ, Wong KK, Shapiro SD (2010) Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med 16(2):219–223. doi:10.1038/nm.2084

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Jenne CN, Wong CH, Zemp FJ, McDonald B, Rahman MM, Forsyth PA, McFadden G, Kubes P (2013) Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe 13(2):169–180. doi:10.1016/j.chom.2013.01.005

    CAS  PubMed  Google Scholar 

  50. Jonsson F, Mancardi DA, Kita Y, Karasuyama H, Iannascoli B, Van Rooijen N, Shimizu T, Daeron M, Bruhns P (2011) Mouse and human neutrophils induce anaphylaxis. J Clin Invest 121(4):1484–1496. doi:10.1172/JCI45232

    PubMed Central  PubMed  Google Scholar 

  51. Kambas K, Mitroulis I, Ritis K (2012) The emerging role of neutrophils in thrombosis—the journey of TF through NETs. Front Immunol 3:385. doi:10.3389/fimmu.2012.00385

    PubMed Central  PubMed  Google Scholar 

  52. Kang EM, Marciano BE, DeRavin S, Zarember KA, Holland SM, Malech HL (2011) Chronic granulomatous disease: overview and hematopoietic stem cell transplantation. J Allergy Clin Immunol 127(6):1319–1326. doi:10.1016/j.jaci.2011.03.028, quiz 1327–1318

    PubMed Central  PubMed  Google Scholar 

  53. Kantari C, Pederzoli-Ribeil M, Amir-Moazami O, Gausson-Dorey V, Moura IC, Lecomte MC, Benhamou M, Witko-Sarsat V (2007) Proteinase 3, the Wegener autoantigen, is externalized during neutrophil apoptosis: evidence for a functional association with phospholipid scramblase 1 and interference with macrophage phagocytosis. Blood 110(12):4086–4095. doi:10.1182/blood-2007-03-080457

    CAS  PubMed  Google Scholar 

  54. Kessenbrock K, Krumbholz M, Schonermarck U, Back W, Gross WL, Werb Z, Grone HJ, Brinkmann V, Jenne DE (2009) Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 15(6):623–625. doi:10.1038/nm.1959

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Kim JW, Wieckowski E, Taylor DD, Reichert TE, Watkins S, Whiteside TL (2005) Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res 11(3):1010–1020

    CAS  PubMed  Google Scholar 

  56. Kobayashi SD, Braughton KR, Whitney AR, Voyich JM, Schwan TG, Musser JM, DeLeo FR (2003) Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc Natl Acad Sci USA 100(19):10948–10953. doi:10.1073/pnas.1833375100

    CAS  PubMed  Google Scholar 

  57. Kobayashi SD, Voyich JM, Buhl CL, Stahl RM, DeLeo FR (2002) Global changes in gene expression by human polymorphonuclear leukocytes during receptor-mediated phagocytosis: cell fate is regulated at the level of gene expression. Proc Natl Acad Sci USA 99(10):6901–6906. doi:10.1073/pnas.092148299

    CAS  PubMed  Google Scholar 

  58. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13(3):159–175. doi:10.1038/nri3399

    CAS  PubMed  Google Scholar 

  59. Kudo C, Yamashita T, Araki A, Terashita M, Watanabe T, Atsumi M, Tamura M, Sendo F (1993) Modulation of in vivo immune response by selective depletion of neutrophils using a monoclonal antibody, RP-3. I. Inhibition by RP-3 treatment of the priming and effector phases of delayed type hypersensitivity to sheep red blood cells in rats. J Immunol 150(9):3728–3738

    CAS  PubMed  Google Scholar 

  60. Kudo C, Yamashita T, Terashita M, Sendo F (1993) Modulation of in vivo immune response by selective depletion of neutrophils using a monoclonal antibody, RP-3. II. Inhibition by RP-3 treatment of mononuclear leukocyte recruitment in delayed-type hypersensitivity to sheep red blood cells in rats. J Immunol 150(9):3739–3746

    CAS  PubMed  Google Scholar 

  61. Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, Meller S, Chamilos G, Sebasigari R, Riccieri V, Bassett R, Amuro H, Fukuhara S, Ito T, Liu YJ, Gilliet M (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 3(73):73ra19. doi:10.1126/scitranslmed.3001180

    PubMed Central  PubMed  Google Scholar 

  62. Lee CY, Herant M, Heinrich V (2011) Target-specific mechanics of phagocytosis: protrusive neutrophil response to zymosan differs from the uptake of antibody-tagged pathogens. J Cell Sci 124(Pt 7):1106–1114. doi:10.1242/jcs.078592

    CAS  PubMed  Google Scholar 

  63. Lee TD, Gonzalez ML, Kumar P, Grammas P, Pereira HA (2003) CAP37, a neutrophil-derived inflammatory mediator, augments leukocyte adhesion to endothelial monolayers. Microvasc Res 66(1):38–48

    CAS  PubMed  Google Scholar 

  64. Li KW, Turner SM, Emson CL, Hellerstein MK, Dale DC (2011) Deuterium and neutrophil kinetics. Blood 117(22):6052–6053. doi:10.1182/blood-2010-12-322271, author reply 6053–6054

    CAS  PubMed  Google Scholar 

  65. Mack M, Kleinschmidt A, Bruhl H, Klier C, Nelson PJ, Cihak J, Plachy J, Stangassinger M, Erfle V, Schlondorff D (2000) Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat Med 6(7):769–775. doi:10.1038/77498

    CAS  PubMed  Google Scholar 

  66. Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11(8):519–531. doi:10.1038/nri3024

    CAS  PubMed  Google Scholar 

  67. Manzenreiter R, Kienberger F, Marcos V, Schilcher K, Krautgartner WD, Obermayer A, Huml M, Stoiber W, Hector A, Griese M, Hannig M, Studnicka M, Vitkov L, Hartl D (2012) Ultrastructural characterization of cystic fibrosis sputum using atomic force and scanning electron microscopy. J Cyst Fibros 11(2):84–92. doi:10.1016/j.jcf.2011.09.008

    CAS  PubMed  Google Scholar 

  68. Martineau AR, Newton SM, Wilkinson KA, Kampmann B, Hall BM, Nawroly N, Packe GE, Davidson RN, Griffiths CJ, Wilkinson RJ (2007) Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest 117(7):1988–1994. doi:10.1172/JCI31097

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, Brinkmann V, Lorenz M, Bidzhekov K, Khandagale AB, Konrad I, Kennerknecht E, Reges K, Holdenrieder S, Braun S, Reinhardt C, Spannagl M, Preissner KT, Engelmann B (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16(8):887–896. doi:10.1038/nm.2184

    CAS  PubMed  Google Scholar 

  70. Maugeri N, Brambilla M, Camera M, Carbone A, Tremoli E, Donati MB, de Gaetano G, Cerletti C (2006) Human polymorphonuclear leukocytes produce and express functional tissue factor upon stimulation. J Thromb Haemost 4(6):1323–1330. doi:10.1111/j.1538-7836.2006.01968.x

    CAS  PubMed  Google Scholar 

  71. McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P (2012) Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 12(3):324–333. doi:10.1016/j.chom.2012.06.011

    CAS  PubMed  Google Scholar 

  72. Megens RT, Vijayan S, Lievens D, Doring Y, van Zandvoort MA, Grommes J, Weber C, Soehnlein O (2012) Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost 107(3):597–598. doi:10.1160/TH11-09-0650

    CAS  PubMed  Google Scholar 

  73. Mesri M, Altieri DC (1998) Endothelial cell activation by leukocyte microparticles. J Immunol 161(8):4382–4387

    CAS  PubMed  Google Scholar 

  74. Mesri M, Altieri DC (1999) Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a JNK1 signaling pathway. J Biol Chem 274(33):23111–23118

    CAS  PubMed  Google Scholar 

  75. Mocsai A (2013) Diverse novel functions of neutrophils in immunity, inflammation and beyond. J Exp Med, in press

  76. Nagaoka I, Tamura H, Hirata M (2006) An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X7. J Immunol 176(5):3044–3052

    CAS  PubMed  Google Scholar 

  77. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6(3):9

    Google Scholar 

  78. Nauseef WM (2007) How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev 219:88–102

    CAS  PubMed  Google Scholar 

  79. Nieuwland R, Berckmans RJ, McGregor S, Boing AN, Romijn FP, Westendorp RG, Hack CE, Sturk A (2000) Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 95(3):930–935

    CAS  PubMed  Google Scholar 

  80. Nourshargh S, Hordijk PL, Sixt M (2010) Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat Rev Mol Cell Biol 11(5):12. doi:10.1038/nrm2889

    Google Scholar 

  81. Pekarek LA, Starr BA, Toledano AY, Schreiber H (1995) Inhibition of tumor growth by elimination of granulocytes. J Exp Med 181(1):435–440

    CAS  PubMed  Google Scholar 

  82. Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N, Kamhawi S, Lawyer P, Fay MP, Germain RN, Sacks D (2008) In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321(5891):970–974. doi:10.1126/science.1159194

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Pillay J, den Braber I, Vrisekoop N, Kwast LM, de Boer RJ, Borghans JA, Tesselaar K, Koenderman L (2010) In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 116(4):625–627. doi:10.1182/blood-2010-01-259028

    CAS  PubMed  Google Scholar 

  84. Pluskota E, Woody NM, Szpak D, Ballantyne CM, Soloviev DA, Simon DI, Plow EF (2008) Expression, activation, and function of integrin alphaMbeta2 (Mac-1) on neutrophil-derived microparticles. Blood 112(6):2327–2335. doi:10.1182/blood-2007-12-127183

    CAS  PubMed  Google Scholar 

  85. Porcherie A, Mathieu C, Peronet R, Schneider E, Claver J, Commere PH, Kiefer-Biasizzo H, Karasuyama H, Milon G, Dy M, Kinet JP, Louis J, Blank U, Mecheri S (2011) Critical role of the neutrophil-associated high-affinity receptor for IgE in the pathogenesis of experimental cerebral malaria. J Exp Med 208(11):2225–2236. doi:10.1084/jem.20110845

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Porro C, Lepore S, Trotta T, Castellani S, Ratclif L, Battaglino A, Di Gioia S, Martinez MC, Conese M, Maffione AB (2010) Isolation and characterization of microparticles in sputum from cystic fibrosis patients. Respir Res 11:94. doi:10.1186/1465-9921-11-94

    PubMed Central  PubMed  Google Scholar 

  87. Prakash PS, Caldwell CC, Lentsch AB, Pritts TA, Robinson BR (2012) Human microparticles generated during sepsis in patients with critical illness are neutrophil-derived and modulate the immune response. J Trauma Acute Care Surg 73(2):401–406. doi:10.1097/TA.0b013e31825a776d, discussion 406–407

    CAS  PubMed  Google Scholar 

  88. Qu Y, Franchi L, Nunez G, Dubyak GR (2007) Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J Immunol 179(3):1913–1925

    CAS  PubMed  Google Scholar 

  89. Rada BK, Geiszt M, Kaldi K, Timar C, Ligeti E (2004) Dual role of phagocytic NADPH oxidase in bacterial killing. Blood 104(9):2947–2953. doi:10.1182/blood-2004-03-1005

    CAS  PubMed  Google Scholar 

  90. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172

    CAS  PubMed  Google Scholar 

  91. Reeves EP, Lu H, Jacobs HL, Messina CG, Bolsover S, Gabella G, Potma EO, Warley A, Roes J, Segal AW (2002) Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416(6878):291–297. doi:10.1038/416291a

    CAS  PubMed  Google Scholar 

  92. Rotondo R, Bertolotto M, Barisione G, Astigiano S, Mandruzzato S, Ottonello L, Dallegri F, Bronte V, Ferrini S, Barbieri O (2011) Exocytosis of azurophil and arginase 1-containing granules by activated polymorphonuclear neutrophils is required to inhibit T lymphocyte proliferation. J Leukoc Biol 89(5):721–727. doi:10.1189/jlb.1109737

    CAS  PubMed  Google Scholar 

  93. Sadallah S, Eken C, Martin PJ, Schifferli JA (2011) Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells. J Immunol 186(11):6543–6552. doi:10.4049/jimmunol.1002788

    CAS  PubMed  Google Scholar 

  94. Sadallah S, Eken C, Schifferli JA (2008) Erythrocyte-derived ectosomes have immunosuppressive properties. J Leukoc Biol 84(5):1316–1325. doi:10.1189/jlb.0108013

    CAS  PubMed  Google Scholar 

  95. Sadallah S, Eken C, Schifferli JA (2011) Ectosomes as immunomodulators. Semin Immunopathol 33(5):487–495. doi:10.1007/s00281-010-0232-x

    CAS  PubMed  Google Scholar 

  96. Sadallah S, Eken C, Schifferli JA (2011) Ectosomes as modulators of inflammation and immunity. Clin Exp Immunol 163(1):26–32. doi:10.1111/j.1365-2249.2010.04271.x

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, Uehata T, Iwasaki H, Omori H, Yamaoka S, Yamamoto N, Akira S (2012) Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 12(1):109–116. doi:10.1016/j.chom.2012.05.015

    CAS  PubMed  Google Scholar 

  98. Scapini P, Bazzoni F, Cassatella MA (2008) Regulation of B-cell-activating factor (BAFF)/B lymphocyte stimulator (BLyS) expression in human neutrophils. Immunol Lett 116(1):1–6. doi:10.1016/j.imlet.2007.11.009

    CAS  PubMed  Google Scholar 

  99. Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA (2000) The neutrophil as a cellular source of chemokines. Immunol Rev 177:195–203

    CAS  PubMed  Google Scholar 

  100. Schmidt S, Moser M, Sperandio M (2012) The molecular basis of leukocyte recruitment and its deficiencies. Mol Immunol. doi:10.1016/j.molimm.2012.11.006

    Google Scholar 

  101. Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, Esmon CT (2011) Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 118(7):1952–1961. doi:10.1182/blood-2011-03-343061

    CAS  PubMed  Google Scholar 

  102. Soehnlein O, Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10(6):12. doi:10.1038/nri2779

    Google Scholar 

  103. Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER (2010) Neutrophil kinetics in health and disease. Trends Immunol 31(8):318–324. doi:10.1016/j.it.2010.05.006

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Talukdar S, da Oh Y, Bandyopadhyay G, Li D, Xu J, McNelis J, Lu M, Li P, Yan Q, Zhu Y, Ofrecio J, Lin M, Brenner MB, Olefsky JM (2012) Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med 18(9):1407–1412. doi:10.1038/nm.2885

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Theilgaard-Monch K, Jacobsen LC, Borup R, Rasmussen T, Bjerregaard MD, Nielsen FC, Cowland JB, Borregaard N (2005) The transcriptional program of terminal granulocytic differentiation. Blood 105(4):1785–1796. doi:10.1182/blood-2004-08-3346

    PubMed  Google Scholar 

  106. Theilgaard-Monch K, Knudsen S, Follin P, Borregaard N (2004) The transcriptional activation program of human neutrophils in skin lesions supports their important role in wound healing. J Immunol 172(12):7684–7693

    PubMed  Google Scholar 

  107. Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9(8):581–593. doi:10.1038/nri2567

    CAS  PubMed  Google Scholar 

  108. Thewissen M, Damoiseaux J, van de Gaar J, Tervaert JW (2011) Neutrophils and T cells: bidirectional effects and functional interferences. Mol Immunol 48(15–16):2094–2101. doi:10.1016/j.molimm.2011.07.006

    CAS  PubMed  Google Scholar 

  109. Timar CI, Lorincz AM, Csepanyi-Komi R, Valyi-Nagy A, Nagy G, Buzas EI, Ivanyi Z, Kittel A, Powell DW, McLeish KR, Ligeti E (2013) Antibacterial effect of microvesicles released from human neutrophilic granulocytes. Blood 121(3):510–518. doi:10.1182/blood-2012-05-431114

    CAS  PubMed  Google Scholar 

  110. Urban CF, Reichard U, Brinkmann V, Zychlinsky A (2006) Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol 8(4):668–676. doi:10.1111/j.1462-5822.2005.00659.x

    CAS  PubMed  Google Scholar 

  111. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659. doi:10.1038/ncb1596

    CAS  PubMed  Google Scholar 

  112. van de Vijver E, Maddalena A, Sanal O, Holland SM, Uzel G, Madkaikar M, de Boer M, van Leeuwen K, Koker MY, Parvaneh N, Fischer A, Law SK, Klein N, Tezcan FI, Unal E, Patiroglu T, Belohradsky BH, Schwartz K, Somech R, Kuijpers TW, Roos D (2012) Hematologically important mutations: leukocyte adhesion deficiency (first update). Blood Cells Mol Dis 48(1):53–61. doi:10.1016/j.bcmd.2011.10.004

    PubMed  Google Scholar 

  113. van Gisbergen KP, Sanchez-Hernandez M, Geijtenbeek TB, van Kooyk Y (2005) Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J Exp Med 201(8):1281–1292. doi:10.1084/jem.20041276

    PubMed Central  PubMed  Google Scholar 

  114. Vickers KC, Remaley AT (2012) Lipid-based carriers of microRNAs and intercellular communication. Curr Opin Lipidol 23(2):91–97. doi:10.1097/MOL.0b013e328350a425

    CAS  PubMed  Google Scholar 

  115. Vignais PV (2002) The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59(9):1428–1459

    CAS  PubMed  Google Scholar 

  116. von Bruhl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, Khandoga A, Tirniceriu A, Coletti R, Kollnberger M, Byrne RA, Laitinen I, Walch A, Brill A, Pfeiler S, Manukyan D, Braun S, Lange P, Riegger J, Ware J, Eckart A, Haidari S, Rudelius M, Schulz C, Echtler K, Brinkmann V, Schwaiger M, Preissner KT, Wagner DD, Mackman N, Engelmann B, Massberg S (2012) Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 209(4):819–835. doi:10.1084/jem.20112322

    Google Scholar 

  117. Walker MJ, Hollands A, Sanderson-Smith ML, Cole JN, Kirk JK, Henningham A, McArthur JD, Dinkla K, Aziz RK, Kansal RG, Simpson AJ, Buchanan JT, Chhatwal GS, Kotb M, Nizet V (2007) DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat Med 13(8):981–985. doi:10.1038/nm1612

    CAS  PubMed  Google Scholar 

  118. Watanabe J, Marathe GK, Neilsen PO, Weyrich AS, Harrison KA, Murphy RC, Zimmerman GA, McIntyre TM (2003) Endotoxins stimulate neutrophil adhesion followed by synthesis and release of platelet-activating factor in microparticles. J Biol Chem 278(35):33161–33168. doi:10.1074/jbc.M305321200

    CAS  PubMed  Google Scholar 

  119. Witko-Sarsat V, Mocek J, Bouayad D, Tamassia N, Ribeil JA, Candalh C, Davezac N, Reuter N, Mouthon L, Hermine O, Pederzoli-Ribeil M, Cassatella MA (2010) Proliferating cell nuclear antigen acts as a cytoplasmic platform controlling human neutrophil survival. J Exp Med 207(12):2631–2645. doi:10.1084/jem.20092241

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Witko-Sarsat V, Pederzoli-Ribeil M, Hirsch E, Sozzani S, Cassatella MA (2011) Regulating neutrophil apoptosis: new players enter the game. Trends Immunol 32(3):117–124. doi:10.1016/j.it.2011.01.001

    CAS  PubMed  Google Scholar 

  121. Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13(3):269–288

    CAS  PubMed  Google Scholar 

  122. Yang D, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192(7):1069–1074

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Yang D, de la Rosa G, Tewary P, Oppenheim JJ (2009) Alarmins link neutrophils and dendritic cells. Trends Immunol 30(11):531–537. doi:10.1016/j.it.2009.07.004

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, Pittman K, Asaduzzaman M, Wu K, Meijndert HC, Malawista SE, de Boisfleury CA, Zhang K, Conly J, Kubes P (2012) Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 18(9):1386–1393. doi:10.1038/nm.2847

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Professors W. Nauseef, for providing green fluorescent bacteria, and Peter Enyedi, for critical reading of the manuscript. Experimental work in the authors’ laboratory was supported by grants from the Hungarian Research Fund (OTKA K81277 and K75084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erzsébet Ligeti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timár, C.I., Lőrincz, Á.M. & Ligeti, E. Changing world of neutrophils. Pflugers Arch - Eur J Physiol 465, 1521–1533 (2013). https://doi.org/10.1007/s00424-013-1285-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1285-1

Keywords

Navigation