Skip to main content
Log in

Physiological carbon dioxide, bicarbonate, and pH sensing

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

In biological systems, carbon dioxide exists in equilibrium with bicarbonate and protons. The individual components of this equilibrium (i.e., CO2, HCO 3 , and H+), which must be sensed to be able to maintain cellular and organismal pH, also function as signals to modulate multiple physiological functions. Yet, the molecular sensors for CO2/HCO 3 /pH remained unknown until recently. Here, we review recent progress in delineating molecular and cellular mechanisms for sensing CO2, HCO 3 , and pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In this case, it is not known whether the mechanism relies on the presence of a carbonic anhydrase.

References

  1. Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434

    CAS  PubMed  Google Scholar 

  2. Casey JR, Grinstein S, Orlowski J (2101) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11:50–61

    Article  CAS  Google Scholar 

  3. Ludwig MG, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, Hofstetter H, Wolf RM, Seuwen K (2003) Proton-sensing G-protein-coupled receptors. Nature 425:93–98

    Article  CAS  PubMed  Google Scholar 

  4. Wang J-Q, Kon J, Mogi C, Tobo M, Damirin A, Sato K, Komachi M, Malchinkhuu E, Murata N, Kimura T, Kuwabara A, Wakamatsu K, Koizumi H, Uede T, Tsujimoto G, Kurose H, Sato T, Harada A, Misawa N, Tomura H, Okajima F (2004) TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J Biol Chem 279:45626–45633

    Article  CAS  PubMed  Google Scholar 

  5. Komarova SV, Pereverzev A, Shum JW, Sims SM, Dixon SJ (2005) Convergent signaling by acidosis and receptor activator of NF-κB ligand (RANKL) on the calcium/calcineurin/NFAT pathway in osteoclasts. Proc Natl Acad Sci USA 102:2643–2648

    Article  CAS  PubMed  Google Scholar 

  6. Tomura H, Mogi C, Sato K, Okajima F (2005) Proton-sensing and lysolipid-sensitive G-protein-coupled receptors: a novel type of multi-functional receptors. Cell Signal 17:1466–1476

    Article  CAS  PubMed  Google Scholar 

  7. Tomura H, Wang J-Q, Komachi M, Damirin A, Mogi C, Tobo M, Kon J, Misawa N, Sato K, Okajima F (2005) Prostaglandin I2 production and cAMP accumulation in response to acidic extracellular pH through OGR1 in human aortic smooth muscle cells. J Biol Chem 280:34458–34464

    Article  CAS  PubMed  Google Scholar 

  8. Seuwen K, Ludwig M-G, Wolf RM (2006) Receptors for protons or lipid messengers or both? J Recept Signal Transduct Res 26:599–610

    Article  CAS  PubMed  Google Scholar 

  9. An S, Tsai C, Goetzl EJ (1995) Cloning, sequencing and tissue distribution of two related G protein-coupled receptor candidates expressed prominently in human lung tissue. FEBS Lett 375:121–124

    Article  CAS  PubMed  Google Scholar 

  10. Yang LV, Radu CG, Roy M, Lee S, McLaughlin J, Teitell MA, Iruela-Arispe ML, Witte ON (2007) Vascular abnormalities in mice deficient for the G protein-coupled receptor GPR4 that functions as a pH sensor. Mol Cell Biol 27:1334–1347

    Article  CAS  PubMed  Google Scholar 

  11. Choi J-W, Lee SY, Choi Y (1996) Identification of a putative G protein-coupled receptor induced during activation-induced apoptosis of T cells. Cell Immunol 168:78–84

    Article  CAS  PubMed  Google Scholar 

  12. Ishii S, Kihara Y, Shimizu T (2005) Identification of T cell death-associated gene 8 (TDAG8) as a novel acid sensing G-protein-coupled receptor. J Biol Chem 280:9083–9087

    Article  CAS  PubMed  Google Scholar 

  13. Radu CG, Nijagal A, McLaughlin J, Wang L, Witte ON (2005) Differential proton sensitivity of related G protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells. Proc Natl Acad Sci USA 102:1632–1637

    Article  CAS  PubMed  Google Scholar 

  14. Tosa N, Murakami M, Jia WY, Yokoyama M, Masunaga T, Iwabuchi C, Inobe M, Iwabuchi K, Miyazaki T, Onoe K, Iwata M, Uede T (2003) Critical function of T cell death-associated gene 8 in glucocorticoid-induced thymocyte apoptosis. Int Immunol 15:741–749

    Article  CAS  PubMed  Google Scholar 

  15. Radu CG, Cheng D, Nijagal A, Riedinger M, McLaughlin J, Yang LV, Johnson J, Witte ON (2006) Normal immune development and glucocorticoid-induced thymocyte apoptosis in mice deficient for the T-cell death-associated gene 8 receptor. Mol Cell Biol 26:668–677

    Article  CAS  PubMed  Google Scholar 

  16. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90:291–366

    Article  CAS  PubMed  Google Scholar 

  17. Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–38

    Article  CAS  PubMed  Google Scholar 

  18. Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M (1997) TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J 16:5464–5471

    Article  CAS  PubMed  Google Scholar 

  19. Hebert SC, Desir G, Giebisch G, Wang W (2005) Molecular diversity and regulation of renal potassium channels. Physiol Rev 85:319–371

    Article  CAS  PubMed  Google Scholar 

  20. Heitzmann D, Warth R (2008) Physiology and pathophysiology of potassium channels in gastrointestinal epithelia. Physiol Rev 88:1119–1182

    Article  CAS  PubMed  Google Scholar 

  21. Huang AL, Chen XK, Hoon MA, Chandrashekar J, Guo W, Trankner D, Ryba NJP, Zuker CS (2006) The cells and logic for mammalian sour taste detection. Nature 442:934–938

    Article  CAS  PubMed  Google Scholar 

  22. Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H (2006) Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci 103:12569–12574

    Article  CAS  PubMed  Google Scholar 

  23. Chandrashekar J, Hoon MA, Ryba NJP, Zuker CS (2006) The receptors and cells for mammalian taste. Nature 444:288–294

    Article  CAS  PubMed  Google Scholar 

  24. Delmas P (2005) Polycystins: polymodal receptor/ion-channel cellular sensors. Pflügers Arch Eur J Physiol 451:264–276

    Article  CAS  Google Scholar 

  25. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    Article  CAS  PubMed  Google Scholar 

  26. Tominaga M, Tominaga T (2005) Structure and function of TRPV1. Pflüg Archiv Europ J Physiol 451:143–150

    Article  CAS  Google Scholar 

  27. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  28. Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Ann Rev Neurosci 24:487–517

    Article  CAS  PubMed  Google Scholar 

  29. Geppetti P, Trevisani M (2004) Activation and sensitisation of the vanilloid receptor: role in gastrointestinal inflammation and function. Br J Pharmacol 141:1313–1320

    Article  CAS  PubMed  Google Scholar 

  30. Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E, Ryba NJP, Zuker CS (2010) The cells and peripheral representation of sodium taste in mice. Nature 464:297–301

    Article  CAS  PubMed  Google Scholar 

  31. Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82:735–767

    CAS  PubMed  Google Scholar 

  32. Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997) A proton-gated cation channel involved in acid-sensing. Nature 386:173–177

    Article  CAS  PubMed  Google Scholar 

  33. Waldmann R, Lazdunski M (1998) H+-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 8:418–424

    Article  CAS  PubMed  Google Scholar 

  34. Krishtal O (2003) The ASICs: signaling molecules? Modulators? Trends Neurosci 26:477–483

    Article  CAS  PubMed  Google Scholar 

  35. Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449:316–323

    Article  CAS  PubMed  Google Scholar 

  36. Gründer S, Chen X (2010) Sructure, function, and pharmacology of acid-sensing ion channels (ASICs): focus on ASIC1a. Int J Physiol Pathophysiol Pharmacol 2:73–94

    Google Scholar 

  37. Price MP, Lewin GR, McIlwrath SL, Cheng C, Xie J, Heppenstall PA, Stucky CL, Mannsfeldt AG, Brennan TJ, Drummond HA, Qiao J, Benson CJ, Tarr DE, Hrstka RF, Yang B, Williamson RA, Welsh MJ (2000) The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407:1007–1011

    Article  CAS  PubMed  Google Scholar 

  38. Lu Y, Ma X, Sabharwal R, Snitsarev V, Morgan D, Rahmouni K, Drummond HA, Whiteis CA, Costa V, Price M, Benson C, Welsh MJ, Chapleau MW, Abboud FM (2009) The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron 64:885–897

    Article  CAS  PubMed  Google Scholar 

  39. Tan Z-Y, Lu Y, Whiteis CA, Benson CJ, Chapleau MW, Abboud FM (2007) Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells. Circ Res 101:1009–1019

    Article  CAS  PubMed  Google Scholar 

  40. Gründer S, Geissler H-S, Bässler E-L, Ruppersberg JP (2000) A new member of acid-sensing ion channels from pituitary gland. NeuroReport 11:1607–1611

    Article  PubMed  Google Scholar 

  41. Jahr H, van Driel M, van Osch GJVM, Weinans H, van Leeuwen JPTM (2005) Identification of acid-sensing ion channels in bone. Biochem Biophys Res Commun 337:349–354

    Article  CAS  PubMed  Google Scholar 

  42. Grifoni SC, Jernigan NL, Hamilton G, Drummond HA (2008) ASIC proteins regulate smooth muscle cell migration. Microvasc Res 75:202–210

    Article  CAS  PubMed  Google Scholar 

  43. Drummond HA, Jernigan NL, Grifoni SC (2008) Sensing tension: epithelial sodium channel/acid-sensing ion channel proteins in cardiovascular homeostasis. Hypertension 51:1265–1271

    Article  CAS  PubMed  Google Scholar 

  44. Ziemann AE, Allen JE, Dahdaleh NS, Drebot II, Coryell MW, Wunsch AM, Lynch CM, Faraci FM, Howard Iii MA, Welsh MJ, Wemmie JA (2009) The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior. Cell 139:1012–1021

    Article  CAS  PubMed  Google Scholar 

  45. Aronson PS, Nee J, Suhm MA (1982) Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles. Nature 299:161–163

    Article  CAS  PubMed  Google Scholar 

  46. Gluck SL (2004) Acid sensing in renal epithelial cells. J Clin Invest 114:1696–1699

    CAS  PubMed  Google Scholar 

  47. Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, Plowman GD, Rudy B, Schlessinger J (1995) Protein-tyrosine kinase Pyk2 involved in Ca2+-induced regulation of ion-channel and map kinase functions. Nature 376:737–745

    Article  CAS  PubMed  Google Scholar 

  48. Li SY, Sato S, Yang XJ, Preisig PA, Alpern RJ (2004) Pyk2 activation is integral to acid stimulation of sodium/hydrogen exchanger 3. J Clin Invest 114:1782–1789

    CAS  PubMed  Google Scholar 

  49. Preisig PA (2007) The acid-activated signaling pathway: starting with Pyk2 and ending with increased NHE3 activity. Kidney Int 72:1324–1329

    Article  CAS  PubMed  Google Scholar 

  50. Yamaji Y, Tsuganezawa H, Moe OW, Alpern RJ (1997) Intracellular acidosis activates c-Src. Am J Physiol Cell Physiol 272:C886–C893

    CAS  Google Scholar 

  51. Ambuhl PM, Amemiya M, Danczkay M, Lotscher M, Kaissling B, Moe OW, Preisig PA, Alpern RJ (1996) Chronic metabolic acidosis increases NHE3 protein abundance in rat kidney. Am J Physiol Renal Physiol 271:F917–F925

    CAS  Google Scholar 

  52. Yang XJ, Amemiya M, Peng Y, Moe OW, Preisig PA, Alpern RJ (2000) Acid incubation causes exocytic insertion of NHE3 in OKP cells. Am J Physiol Cell Physiol 279:C410–C419

    CAS  PubMed  Google Scholar 

  53. Espiritu DJD, Bernardo AA, Robey RB, Arruda JAL (2002) A central role for Pyk2-Src interaction in coupling diverse stimuli to increased epithelial NBC activity. Am J Physiol Renal Physiol 283:F663–F670

    PubMed  Google Scholar 

  54. Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the C-Src protooncogene leads to osteopetrosis in mice. Cell 64:693–702

    Article  CAS  PubMed  Google Scholar 

  55. Orr AW, Murhpy-Ulrich JE (2004) Regulation of endothelial cell function by FAK and Pyk2. Front Biosci 9:1254–1266

    Article  CAS  PubMed  Google Scholar 

  56. Kodama H, Fukuda K, Takahashi E, Tahara S, Tomita Y, Ieda M, Kimura K, Owada KM, Vuori K, Ogawa S (2003) Selective involvement of p130Cas/Crk/Pyk2/c-Src in endothelin-1-induced JNK activation. Hypertension 41:1372–1379

    Article  CAS  PubMed  Google Scholar 

  57. Tsuganezawa H, Sato S, Yamaji Y, Preisig PA, Moe OW, Alpern RJ (2002) Role of c-SRC and ERK in acid-induced activation of NHE3. Kidney Int 62:41–50

    Article  CAS  PubMed  Google Scholar 

  58. Ramos LS, Zippin JH, Kamenetsky M, Buck J, Levin LR (2008) Glucose and GLP-1 stimulate cAMP production via distinct adenylyl cyclases in INS-1E insulinoma cells. J Gen Physiol 132:329–338

    Article  CAS  PubMed  Google Scholar 

  59. Pastor-Soler N, Beaulieu V, Litvin TN, Da Silva N, Chen Y, Brown D, Buck J, Levin LR, Breton S (2003) Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling. J Biol Chem 278:49523–49529

    Article  CAS  PubMed  Google Scholar 

  60. Prost LR, Daley ME, Le Sage V, Bader MW, Le Moual H, Klevit RE, Miller SI (2007) Activation of the bacterial sensor kinase PhoQ by acidic pH. Mol Cell 26:165–174

    Article  CAS  PubMed  Google Scholar 

  61. Yu X-J, McGourty K, Liu M, Unsworth KE, Holden DW (2010) pH sensing by intracellular Salmonella induces effector translocation. Science 328:1040–1043

    Article  CAS  PubMed  Google Scholar 

  62. Tews I, Findeisen F, Sinning I, Schultz A, Schultz JE, Linder JU (2005) The structure of a pH-sensing mycobacterial adenylyl cyclase holoenzyme. Science 308:1020–1023

    Article  CAS  PubMed  Google Scholar 

  63. Dittrich D, Keller C, Ehlers S, Schultz JE, Sander P (2006) Characterization of a Mycobacterium tuberculosis mutant deficient in pH-sensing adenylate cyclase Rv1264. Int J Med Microbiol 296:563–566

    Article  CAS  PubMed  Google Scholar 

  64. Tao M, Lipmann F (1969) Isolation of adenyl cyclase from Escherichia coli. Proc Natl Acad Sci USA 63:86–92

    Article  CAS  PubMed  Google Scholar 

  65. Botsford JL, Harman JG (1992) Cyclic AMP in prokaryotes. Microbiol Rev 56:100–122

    CAS  PubMed  Google Scholar 

  66. Castanie-Cornet M-P, Penfound TA, Smith D, Elliott JF, Foster JW (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–3535

    CAS  PubMed  Google Scholar 

  67. Ma Z, Richard H, Foster JW (2003) pH-dependent modulation of cyclic AMP levels and GadW-dependent repression of RpoS affect synthesis of the GadX regulator and Escherichia coli acid resistance. J Bacteriol 185:6852–6859

    Article  CAS  PubMed  Google Scholar 

  68. Srivastava J, Barber DL, Jacobson MP (2007) Intracellular pH sensors: design principles and functional significance. Physiology 22:30–39

    Article  CAS  PubMed  Google Scholar 

  69. Brown D, Paunescu TG, Breton S, Marshansky V (2009) Regulation of the V-ATPase in kidney epithelial cells: dual role in acid-base homeostasis and vesicle trafficking. J Exp Biol 212:1762–1772

    Article  CAS  PubMed  Google Scholar 

  70. Hassel B (2000) Carboxylation and anaplerosis in neurons and glia. Mol Neurobiol 22:21–40

    Article  CAS  PubMed  Google Scholar 

  71. Berkner KL (2008) Vitamin K-dependent carboxylation. Vitam Horm 78:131–156

    Article  CAS  PubMed  Google Scholar 

  72. Sadowski JA, Esmon CT, Suttie JW (1976) Vitamin K-dependent carboxylase. Requirements of the rat liver microsomal enzyme system. J Biol Chem 251:2770–2776

    CAS  PubMed  Google Scholar 

  73. Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289:625–628

    Article  CAS  PubMed  Google Scholar 

  74. Guo D, Zhang JJ, Huang XY (2009) Stimulation of guanylyl cyclase-D by bicarbonate. Biochemistry 48:4417–4422

    Article  CAS  PubMed  Google Scholar 

  75. Sun L, Wang H, Hu J, Han J, Matsunami H, Luo M (2009) Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. Proc Natl Acad Sci USA 106:2041–2046

    Article  CAS  PubMed  Google Scholar 

  76. Tresguerres M, Parks SK, Salazar E, Levin LR, Goss GG, Buck J (2010) Bicarbonate-sensing soluble adenylyl cyclase is an essential sensor for acid/base homeostasis. Proc Natl Acad Sci USA 107:442–447

    Article  CAS  PubMed  Google Scholar 

  77. Tresguerres M, Parks SK, Wood CM, Goss GG (2007) V-H+-ATPase translocation during blood alkalosis in dogfish gills: interaction with carbonic anhydrase and involvement in the postfeeding alkaline tide. Am J Physiol Reg Int Comp Physiol 292:R2012–R2019

    CAS  Google Scholar 

  78. Acin-Perez R, Salazar E, Brosel S, Yang H, Schon EA, Manfredi G (2009) Modulation of mitochondrial protein phosphorylation by soluble adenylyl cyclase ameliorates cytochrome oxidase defects. EMBO Mol Med 1:392–406

    Article  CAS  PubMed  Google Scholar 

  79. Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G (2009) Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab 9:265–276

    Article  CAS  PubMed  Google Scholar 

  80. Farrell J, Ramos L, Tresguerres M, Kamenetsky M, Levin LR, Buck J (2008) Somatic "soluble" adenylyl cyclase isoforms are unaffected in Sacytm1Lex/Sacytm1Lex "knockout" mice. PLoS ONE 3:e3251

    Article  CAS  PubMed  Google Scholar 

  81. Geng W, Wang Z, Zhang J, Reed BY, Pak CY, Moe OW (2005) Cloning and characterization of the human soluble adenylyl cyclase. Am J Physiol Cell Physiol 288:C1305–C1316

    Article  CAS  PubMed  Google Scholar 

  82. Sinclair ML, Wang XY, Mattia M, Conti M, Buck J, Wolgemuth DJ, Levin LR (2000) Specific expression of soluble adenylyl cyclase in male germ cells. Mol Reprod Dev 56:6–11

    Article  CAS  PubMed  Google Scholar 

  83. Zippin JH, Chen Y, Nahirney P, Kamenetsky M, Wuttke MS, Fischman DA, Levin LR, Buck J (2003) Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains. FASEB J 17:82–84

    CAS  PubMed  Google Scholar 

  84. Schmid A, Sutto Z, Nlend MC, Horvath G, Schmid N, Buck J, Levin LR, Conner GE, Fregien N, Salathe M (2007) Soluble adenylyl cyclase is localized to cilia and contributes to ciliary beat frequency regulation via production of cAMP. J Gen Physiol 130:99–109

    Article  CAS  PubMed  Google Scholar 

  85. Buck J, Sinclair ML, Schapal L, Cann MJ, Levin LR (1999) Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Natl Acad Sci USA 96:79–84

    Article  CAS  PubMed  Google Scholar 

  86. Steegborn C, Litvin TN, Hess KC, Capper AB, Taussig R, Buck J, Levin LR, Wu H (2005) A novel mechanism for adenylyl cyclase inhibition from the crystal structure of its complex with catechol estrogen. J Biol Chem 280:31754–31759

    Article  CAS  PubMed  Google Scholar 

  87. Steegborn C, Litvin TN, Levin LR, Buck J, Wu H (2005) Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment. Nat Struct Mol Biol 12:32–37

    Article  CAS  PubMed  Google Scholar 

  88. Linder J (2006) Class III adenylyl cyclases: molecular mechanisms of catalysis and regulation. Cell Mol Life Sci 63:1736–1751

    Article  CAS  PubMed  Google Scholar 

  89. Linder JU (2008) Structure-function relationships in Escherichia coli adenylate cyclase. Biochem J 415:449–454

    Article  CAS  PubMed  Google Scholar 

  90. Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR (2003) Kinetic properties of "soluble" adenylyl cyclase. Synergism between calcium and bicarbonate. J Biol Chem 278:15922–15926

    Article  CAS  PubMed  Google Scholar 

  91. Jaiswal BS, Conti M (2001) Identification and functional analysis of splice variants of the germ cell soluble adenylyl cyclase. J Biol Chem 276:31698–31708

    Article  CAS  PubMed  Google Scholar 

  92. Chaloupka JA, Bullock SA, Iourgenko V, Levin LR, Buck J (2006) Autoinhibitory regulation of soluble adenylyl cyclase. Mol Reprod Dev 73:361–368

    Article  CAS  PubMed  Google Scholar 

  93. Xie F, Garcia MA, Carlson AE, Schuh SM, Babcock DF, Jaiswal BS, Gossen JA, Esposito G, van Duin M, Conti M (2006) Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization. Dev Biol 296:353–362

    Article  CAS  PubMed  Google Scholar 

  94. Esposito G, Jaiswal BS, Xie F, Krajnc-Franken MA, Robben TJ, Strik AM, Kuil C, Philipsen RL, van Duin M, Conti M, Gossen JA (2004) Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm-motility defect. Proc Natl Acad Sci USA 101:2993–2998

    Article  CAS  PubMed  Google Scholar 

  95. Hess KC, Jones BH, Marquez B, Chen Y, Ord TS, Kamenetsky M, Miyamoto C, Zippin JH, Kopf GS, Suarez SS, Levin LR, Williams CJ, Buck J, Moss SB (2005) The "soluble" adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev Cell 9:249–259

    Article  CAS  PubMed  Google Scholar 

  96. Pastor-Soler NM, Hallows KR, Smolak C, Gong F, Brown D, Breton S (2008) Alkaline pH- and cAMP-induced V-ATPase membrane accumulation is mediated by protein kinase A in epididymal clear cells. Am J Physiol Cell Physiol 294:C488–C494

    Article  CAS  PubMed  Google Scholar 

  97. Paunescu TG, Da Silva N, Russo LM, McKee M, Lu HA, Breton S, Brown D (2008) Association of soluble adenylyl cyclase with the V-ATPase in renal epithelial cells. Am J Physiol Renal Physiol 294:F130–F138

    Article  CAS  PubMed  Google Scholar 

  98. Gong F, Alzamora R, Smolak C, Li H, Naveed S, Neumann D, Hallows KR, Pastor-Soler NM (2010) Vacuolar H+-ATPase apical accumulation in kidney intercalated cells is regulated by PKA and AMP-activated protein kinase. Am J Physiol-Renal Physiol 298:F1162–F1169

    Article  CAS  Google Scholar 

  99. Pastor-Soler N, Pietrement C, Breton S (2005) Role of acid/base transporters in the male reproductive tract and potential consequences of their malfunction. Physiology 20:417–428

    Article  CAS  PubMed  Google Scholar 

  100. Boron WF (2006) Acid-base transport by the renal proximal tubule. J Am Soc Nephrol 17:2368–2382

    Article  CAS  PubMed  Google Scholar 

  101. Paunescu TG, Ljubojevic M, Russo LM, Winter C, McLaughlin MM, Wagner CA, Breton S, Brown D (2010) cAMP stimulates apical V-ATPase accumulation, microvillar elongation, and proton extrusion in kidney collecting duct A-intercalated cells. Am J Physiol-Renal Physiol 298:F643–F654

    Article  CAS  PubMed  Google Scholar 

  102. Tresguerres M, Parks SK, Katoh F, Goss GG (2006) Microtubule-dependent relocation of branchial V-H+-ATPase to the basolateral membrane in the Pacific spiny dogfish (Squalus acanthias): a role in base secretion. J Exp Biol 209:599–609

    Article  CAS  PubMed  Google Scholar 

  103. Tresguerres M, Katoh F, Fenton H, Jasinska E, Goss GG (2005) Regulation of branchial V-H+-ATPase Na+/K+-ATPase and NHE2 in response to acid and base infusions in the Pacific spiny dogfish (Squalus acanthias). J Exp Biol 208:345–354

    Article  CAS  PubMed  Google Scholar 

  104. Braun T (1975) The effect of divalent cations on bovine spermatozoal adenylate cyclase activity. J Cyclic Nucleotide Res 1:271–281

    CAS  PubMed  Google Scholar 

  105. Neer EJ (1978) Multiple forms of adenylate cyclase. Adv Cyclic Nucleotide Res 9:69–83

    CAS  PubMed  Google Scholar 

  106. Garbers DL, Tubb DJ, Hyne RV (1982) A requirement of bicarbonate for Ca2+-induced elevations of cyclic AMP in guinea pig spermatozoa. J Biol Chem 257:8980–8984

    CAS  PubMed  Google Scholar 

  107. Garty NB, Salomon Y (1987) Stimulation of partially purified adenylate cyclase from bull sperm by bicarbonate. FEBS Lett 218:148–152

    Article  CAS  PubMed  Google Scholar 

  108. Okamura N, Tajima Y, Soejima A, Masuda H, Sugita Y (1985) Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. J Biol Chem 260:9699–9705

    CAS  PubMed  Google Scholar 

  109. Visconti PE, Muschietti JP, Flawia MM, Tezon JG (1990) Bicarbonate dependence of cAMP accumulation induced by phorbol esters in hamster spermatozoa. Biochim Biophys Acta 1054:231–236

    Article  CAS  PubMed  Google Scholar 

  110. Levine N, Marsh DJ (1971) Micropuncture studies of electrochemical aspects of fluid and electrolyte transport in individual seminiferous tubules, epididymis and vas deferens in rats. J Physiol 213:557–570

    CAS  PubMed  Google Scholar 

  111. Demarco IA, Espinosa F, Edwards J, Sosnik J, de la Vega-Beltran JL, Hockensmith JW, Kopf GS, Darszon A, Visconti PE (2003) Involvement of a Na+/HCO 3 cotransporter in mouse sperm capacitation. J Biol Chem 278:7001–7009

    Article  CAS  PubMed  Google Scholar 

  112. Boatman DF, Robbins RS (1991) Bicarbonate: carbon-dioxide regulation of sperm capacitation, hyperactivated motility, and acrosome reactions. Biol Reprod 44:806–813

    Article  CAS  PubMed  Google Scholar 

  113. Lee MA, Storey BT (1986) Bicarbonate is essential for ferilization of mouse eggs: mouse sperm require it to undergo the acrosome reaction. Biol Reprod 34:349–356

    Article  CAS  PubMed  Google Scholar 

  114. Visconti PE, Galantino-Homer H, Moore GD, Bailey JL, Ning X, Fornes M, Kopf GS (1998) The molecular basis of sperm capacitation. J Androl 19:242–248

    CAS  PubMed  Google Scholar 

  115. Schuh SM, Carlson AE, McKnight GS, Conti M, Hille B, Babcock DF (2006) Signaling pathways for modulation of mouse sperm motility by adenosine and catecholamine agonists. Biol Reprod 74:492–500

    Article  CAS  PubMed  Google Scholar 

  116. Hallows KR, Wang HM, Edinger RS, Butterworth MB, Oyster NM, Li H, Buck J, Levin LR, Johnson JP, Pastor-Soler NM (2009) Regulation of epithelial Na+ transport by soluble adenylyl cyclase in kidney collecting duct cells. J Biol Chem 284:5774–5783

    Article  CAS  PubMed  Google Scholar 

  117. Tresguerres M, Levin LR, Buck J, Grosell M (2010) Modulation of NaCl absorption by [HCO 3 ] in the marine teleost intestine is mediated by soluble adenylyl cyclase. Am J Physiol Regul Integr Comp Physiol 299:62–71

    Google Scholar 

  118. Wang Y, Lam CS, Wu F, Wang W, Duan Y, Huang P (2005) Regulation of CFTR channels by HCO 3 sensitive soluble adenylyl cyclase in human airway epithelial cells. Am J Physiol Cell Physiol 289:C1145–C1151

    Article  CAS  PubMed  Google Scholar 

  119. Baudouin-Legros M, Hamdaoui N, Borot F, Fritsch J, Ollero M, Planelles G, Edelman A (2008) Control of basal CFTR gene expression by bicarbonate-sensitive adenylyl cyclase in human pulmonary cells. Cell Physiol Biochem 21:075–086

    Article  CAS  Google Scholar 

  120. Sun XC, Zhai CB, Cui M, Chen Y, Levin LR, Buck J, Bonanno JA (2003) HCO 3 dependent soluble adenylyl cyclase activates cystic fibrosis transmembrane conductance regulator in corneal endothelium. Am J Physiol Cell Physiol 284:C1114–C1122

    CAS  PubMed  Google Scholar 

  121. Geng W, Hill K, Zerwekh JE, Kohler T, Müller R, Moe OW (2009) Inhibition of osteoclast formation and function by bicarbonate: role of soluble adenylyl cyclase. J Cell Physiol 220:332–340

    Article  CAS  PubMed  Google Scholar 

  122. Chen MH, Chen H, Zhou Z, Ruan YC, Wong HY, Lu YC, Guo JH, Chung YW, Huang PB, Huang HF, Zhou WL, Chan HC (210) Involvement of CFTR in oviductal HCO 3 secretion and its effect on soluble adenylate cyclase-dependent early embryo development. Hum Reprod 25:1744–1754

    Article  CAS  Google Scholar 

  123. Halm ST, Zhang J, Halm DR (2010) β-adrenergic activation of electrogenic K+ and Cl secretion in guinea pig distal colonic epithelium proceeds via separate cAMP signaling pathways. Am J Physiol Gastrointest Liver Physiol 299:81–95

    Article  CAS  Google Scholar 

  124. Strazzabosco M, Fiorotto R, Melero S, Glaser S, Francis H, Spirli C, Alpini G (2009) Diferentially expressed adenylyl cyclase isoforms mediate secretory functions in cholangiocyte subpopulation. Hepatology 50:244–252

    Article  CAS  PubMed  Google Scholar 

  125. Fülle HJ, Vassar R, Foster DC, Yang RB, Axel R, Garbers DL (1995) A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc Natl Acad Sci USA 92:3571–3575

    Article  PubMed  Google Scholar 

  126. Young JM, Waters H, Dong C, Fülle H-J, Liman ER (2007) Degeneration of the olfactory guanylyl cyclase D gene during primate evolution. PLoS ONE 2:e884

    Article  CAS  PubMed  Google Scholar 

  127. Hu J, Zhong C, Ding C, Chi Q, Walz A, Mombaerts P, Matsunami H, Luo M (2007) Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317:953–957

    Article  CAS  PubMed  Google Scholar 

  128. Sharabi K, Lecuona E, Helenius IT, Beitel GJ, Sznajder JI, Gruenbaum Y (2009) Sensing, physiological effects and molecular response to elevated CO2 levels in eukaryotes. J Cell Mol Med 13:4304–4318

    Article  CAS  PubMed  Google Scholar 

  129. de Bruyne M, Foster K, Carlson JR (2001) Odor coding in the Drosophila antenna. Neuron 30:537–552

    Article  PubMed  Google Scholar 

  130. Fischler W, Kong P, Marella S, Scott K (2007) The detection of carbonation by the Drosophila gustatory system. Nature 448:1054–1057

    Article  CAS  PubMed  Google Scholar 

  131. Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB (2007) Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445:86–90

    Article  CAS  PubMed  Google Scholar 

  132. Bretscher AJ, Busch KE, de Bono M (2008) A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans. Proc Natl Acad Sci USA 105:8044–8049

    Article  CAS  PubMed  Google Scholar 

  133. Hallem EA, Sternberg PW (2008) Acute carbon dioxide avoidance in Caenorhabditis elegans. Proc Natl Acad Sci USA 105:8038–8043

    Article  CAS  PubMed  Google Scholar 

  134. Birnby DA, Link EM, Vowels JJ, Tian H, Colacurcio PL, Thomas JH (2000) A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in Caenorhabditis elegans. Genetics 155:85–104

    CAS  PubMed  Google Scholar 

  135. Hammer A, Hodgson DRW, Cann MJ (2006) Regulation of prokaryotic adenylyl cyclases by CO2. Biochem J 396:215–218

    Article  CAS  PubMed  Google Scholar 

  136. Zhao J, Hogan EM, Bevensee MO, Boron WF (1995) Out-of-equilibrium CO2/HCO 3 solutions and their use in characterizing a new K/HCO3 cotransporter. Nature 374:636–639

    Article  CAS  PubMed  Google Scholar 

  137. Zhou Y, Bouyer P, Boron WF (2006) Role of a tyrosine kinase in the CO2-induced stimulation of HCO 3 reabsorption by rabbit S2 proximal tubules. Am J Physiol Renal Physiol 291:F358–F367

    Article  CAS  PubMed  Google Scholar 

  138. Zhou Y, Zhao J, Bouyer P, Boron WF (2005) Evidence from renal proximal tubules that HCO 3 and solute reabsorption are acutely regulated not by pH but by basolateral HCO 3 and CO2. Proc Natl Acad Sci USA 102:3875–3880

    Article  CAS  PubMed  Google Scholar 

  139. Chandrashekar J, Yarmolinsky D, von Buchholtz L, Oka Y, Sly W, Ryba NJP, Zuker CS (2009) The taste of carbonation. Science 326:443–445

    Article  CAS  PubMed  Google Scholar 

  140. Putnam RW, Filosa JA, Ritucci NA (2004) Cellular mechanisms involved in CO2 and acid signaling in chemosensitive neurons. Am J Physiol Cell Physiol 287:C1493–C1526

    Article  CAS  PubMed  Google Scholar 

  141. Wellner-Kienitz M-C, Shams H, Scheid P (1998) Contribution of Ca2+-activated K+ channels to central chemosensitivity in cultivated neurons of fetal rat medulla. J Neurophysiol 79:2885–2894

    CAS  PubMed  Google Scholar 

  142. Pineda J, Aghajanian GK (1997) Carbon dioxide regulates the tonic activity of locus coeruleus neurons by modulating a proton- and polyamine-sensitive inward rectifier potassium current. Neuroscience 77:723–743

    Article  CAS  PubMed  Google Scholar 

  143. Filosa JA, Dean JB, Putnam RW (2002) Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones. J Physiol (Lond) 541:493–509

    Article  CAS  Google Scholar 

  144. Trapp S, Aller MI, Wisden W, Gourine AV (2008) A role for TASK-1 (KCNK3) channels in the chemosensory control of breathing. J Neurosci 28:8844–8850

    Article  CAS  PubMed  Google Scholar 

  145. Nunes AR, Monteiro EC, Johnson SM, Gauda EB (2009) Bicarbonate-regulated soluble adenylyl cyclase (sAC) mRNA expression and activity in peripheral chemoreceptors. Adv Exp Med Biol 648:235–241

    Article  CAS  PubMed  Google Scholar 

  146. Summers BA, Overholt JL, Prabhakar NR (2002) CO2 and pH independently modulate L-type Ca2+ current in rabbit carotid body glomus cells. J Neurophysiol 88:604–612

    CAS  PubMed  Google Scholar 

  147. Gonzalez C, Almaraz L, Obeso A, Rigual R (1994) Carotid-body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev 74:829–898

    CAS  PubMed  Google Scholar 

  148. Nurse CA (1990) Carbonic-anhydrase and neuronal enzymes in cultured glomus cells of the carotid-body of the rat. Cell Tissue Res 261:65–71

    Article  CAS  PubMed  Google Scholar 

  149. Rigual R, Iniguez C, Carreres J, Gonzalez C (1985) Carbonic-anhydrase in the carotid-body and the carotid-sinus nerve. Histochemistry 82:577–580

    Article  CAS  PubMed  Google Scholar 

  150. Mogensen EG, Janbon G, Chaloupka J, Steegborn C, Fu MS, Moyrand F, Klengel T, Pearson DS, Geeves MA, Buck J, Levin LR, Muhlschlegel FA (2006) Cryptococcus neoformans senses CO2 through the carbonic anhydrase Can2 and the adenylyl cyclase Cac1. Eukaryot Cell 5:103–111

    Article  CAS  PubMed  Google Scholar 

  151. Klengel T, Liang WJ, Chaloupka J, Ruoff C, Schroppel K, Naglik JR, Eckert SE, Mogensen EG, Haynes K, Tuite MF, Levin LR, Buck J, Muhlschlegel FA (2005) Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol 15:2021–2026

    Article  CAS  PubMed  Google Scholar 

  152. Spicer SS, Ge Z-H, Tashian RE, Hazen-Martin DJ, Schulte BA (1990) Comparative distribution of carbonic anhydrase isozymes III and II in rodent tissues. Am J Anat 187:55–64

    Article  CAS  PubMed  Google Scholar 

  153. Sutto Z, Conner GE, Salathe M (2004) Regulation of human airway ciliary beat frequency by intracellular pH. J Physiol 560:519–532

    Article  CAS  PubMed  Google Scholar 

  154. Zippin JH, Farrell J, Huron D, Kamenetsky M, Hess KC, Fischman DA, Levin LR, Buck J (2004) Bicarbonate-responsive "soluble" adenylyl cyclase defines a nuclear cAMP microdomain. J Cell Biol 164:527–534

    Article  CAS  PubMed  Google Scholar 

  155. Beltran C, Vacquier VD, Moy G, Chen Y, Buck J, Levin LR, Darszon A (2007) Particulate and soluble adenylyl cyclases participate in the sperm acrosome reaction. Biochem Biophys Res Commun 358:1128–1135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Carsten Wagner (University of Zurich, Switzerland) for the insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lonny R. Levin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tresguerres, M., Buck, J. & Levin, L.R. Physiological carbon dioxide, bicarbonate, and pH sensing. Pflugers Arch - Eur J Physiol 460, 953–964 (2010). https://doi.org/10.1007/s00424-010-0865-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0865-6

Keywords

Navigation