Skip to main content

Advertisement

Log in

Permissive role of sphingosine on calcium-dependent endocytosis in chromaffin cells

  • Signaling and cell physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Sphingosine has been shown to modulate neurotransmitter release. Because membrane fusion and fission involve lipid metabolism, we asked here whether sphingosine had a role in regulating endocytosis. To explore this hypothesis, we monitored changes of membrane capacitance (Cm) to study the effects of intracellular sphingosine on membrane retrieval after chromaffin cell stimulation with depolarising pulses (DPs). We found that: (1) sphingosine dialysis through the patch-clamp pipette (SpD) using the whole-cell configuration of the patch-clamp technique (WCC) favours the appearance of a pronounced endocytotic response; (2) SpD-elicited endocytosis was Ca2+-dependent but Ba2+ did not substitute Ca2+; (3) under WCC, such endocytotic response disappeared with repetitive DPs; (4) in cells preincubated with sphingomyelinase to augment endogenous sphingosine synthesis, and then voltage-clamped under the perforated-patch configuration of the patch-clamp technique (PPC), endocytosis decayed little with repeated stimulation; (5) sphingosine-1-phosphate (S1P), a metabolite of sphingosine, had a meagre effect on endocytosis; and (6) neither dynamin inhibitor dynasore nor calmodulin blocker calmidazolium affected the sphingosine elicited endocytosis. We believe this is the first report showing that sphingosine plays a permissive role in activating Ca2+-dependent endocytosis during cell depolarisation. This effect requires high subplasmalemmal cytosolic Ca2+ concentrations and a cytosolic factor(s) that is dialysed with the pipette solution. Independence of dynamin and calmodulin suggests that sphingosine-dependent endocytosis could be a novel, more direct pathway for vesicle recycling under mild depolarisation stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Katz B, Miledi R (1969) Spontaneous and evoked activity of motor nerve endings in calcium ringer. J Physiol 203:689–706

    CAS  PubMed  Google Scholar 

  2. Douglas WW (1968) Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol 34:453–474

    Google Scholar 

  3. Ceccarelli B, Hurlbut WP (1980) Ca2+-dependent recycling of synaptic vesicles at the frog neuromuscular junction. J Cell Biol 87:297–303

    Article  CAS  PubMed  Google Scholar 

  4. Henkel AW, Almers W (1996) Fast steps in exocytosis and endocytosis studied by capacitance measurements in endocrine cells. Curr Opin Neurobiol 6:350–357

    Article  CAS  PubMed  Google Scholar 

  5. Artalejo CR, Henley JR, McNiven MA, Palfrey HC (1995) Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP, and dynamin but not clathrin. Proc Natl Acad Sci USA 92:8328–8332

    Article  CAS  PubMed  Google Scholar 

  6. Blochl A, Sirrenberg C (1996) Neurotrophins stimulate the release of dopamine from rat mesencephalic neurons via Trk and p75Lntr receptors. J Biol Chem 271:21100–21107

    Article  CAS  PubMed  Google Scholar 

  7. Numakawa T, Nakayama H, Suzuki S, Kubo T, Nara F, Numakawa Y, Yokomaku D, Araki T, Ishimoto T, Ogura A, Taguchi T (2003) Nerve growth factor-induced glutamate release is via p75 receptor, ceramide, and Ca(2+) from ryanodine receptor in developing cerebellar neurons. J Biol Chem 278:41259–41269

    Article  CAS  PubMed  Google Scholar 

  8. Jeon HJ, Lee DH, Kang MS, Lee MO, Jung KM, Jung SY, Kim DK (2005) Dopamine release in PC12 cells is mediated by Ca(2+)-dependent production of ceramide via sphingomyelin pathway. J Neurochem 95:811–820

    Article  CAS  PubMed  Google Scholar 

  9. Rohrbough J, Rushton E, Palanker L, Woodruff E, Matthies HJ, Acharya U, Acharya JK, Broadie K (2004) Ceramidase regulates synaptic vesicle exocytosis and trafficking. J Neurosci 24:7789–7803

    Article  CAS  PubMed  Google Scholar 

  10. Kajimoto T, Okada T, Yu H, Goparaju SK, Jahangeer S, Nakamura S (2007) Involvement of sphingosine-1-phosphate in glutamate secretion in hippocampal neurons. Mol Cell Biol 27:3429–3440

    Article  CAS  PubMed  Google Scholar 

  11. Brailoiu E, Cooper RL, Dun NJ (2002) Sphingosine 1-phosphate enhances spontaneous transmitter release at the frog neuromuscular junction. Br J Pharmacol 136:1093–1097

    Article  CAS  PubMed  Google Scholar 

  12. Darios F, Wasser C, Shakirzyanova A, Giniatullin A, Goodman K, Munoz-Bravo JL, Raingo J, Jorgacevski J, Kreft M, Zorec R, Rosa JM, Gandia L, Gutierrez LM, Binz T, Giniatullin R, Kavalali ET, Davletov B (2009) Sphingosine facilitates SNARE complex assembly and activates synaptic vesicle exocytosis. Neuron 62:683–694

    Article  CAS  PubMed  Google Scholar 

  13. Garcia AG, Garcia-De-Diego AM, Gandia L, Borges R, Garcia-Sancho J (2006) Calcium signaling and exocytosis in adrenal chromaffin cells. Physiol Rev 86:1093–1131

    Article  CAS  PubMed  Google Scholar 

  14. Rosa JM, de Diego AM, Gandia L, Garcia AG (2007) L-type calcium channels are preferentially coupled to endocytosis in bovine chromaffin cells. Biochem Biophys Res Commun 357:834–839

    Article  CAS  PubMed  Google Scholar 

  15. de Diego AM, Gandia L, Garcia AG (2008) A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla. Acta Physiol (Oxf) 192:287–301

    Article  Google Scholar 

  16. Wu F, Yao PJ (2009) Clathrin-mediated endocytosis and alzheimer's disease: an update. Ageing Res Rev 8:147–149

    Article  PubMed  Google Scholar 

  17. Artalejo CR, Elhamdani A, Palfrey HC (1996) Calmodulin is the divalent cation receptor for rapid endocytosis, but not exocytosis, in adrenal chromaffin cells. Neuron 16:195–205

    Article  CAS  PubMed  Google Scholar 

  18. Tsai CC, Lin CL, Wang TL, Chou AC, Chou MY, Lee CH, Peng IW, Liao JH, Chen YT, Pan CY (2009) Dynasore inhibits rapid endocytosis in bovine chromaffin cells. Am J Physiol Cell Physiol 297:C397–C406

    Article  CAS  PubMed  Google Scholar 

  19. Livett BG (1984) Adrenal medullary chromaffin cells in vitro. Physiol Rev 64:1103–1161

    CAS  PubMed  Google Scholar 

  20. Moro MA, López MG, Gandía L, Michelena P, García AG (1990) Separation and culture of living adrenaline- and noradrenaline-containing cells from bovine adrenal medullae. Anal Biochem 185:243–248

    Article  CAS  PubMed  Google Scholar 

  21. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  CAS  PubMed  Google Scholar 

  22. Rae J, Cooper K, Gates P, Watsky M (1991) Low access resistance perforated patch recordings using amphotericin B. J Neurosci Methods 37:15–26

    Article  CAS  PubMed  Google Scholar 

  23. Lindau M, Neher E (1988) Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflugers Arch 411:137–146

    Article  CAS  PubMed  Google Scholar 

  24. de Diego AM, Arnaiz-Cot JJ, Hernandez-Guijo JM, Gandia L, Garcia AG (2008) Differential variations in Ca2+ entry, cytosolic Ca2+ and membrane capacitance upon steady or action potential depolarizing stimulation of bovine chromaffin cells. Acta Physiol (Oxf) 194:97–109

    Article  Google Scholar 

  25. Burgoyne RD (1995) Fast exocytosis and endocytosis triggered by depolarisation in single adrenal chromaffin cells before rapid Ca2+ current run-down. Pflugers Arch 430:213–219

    Article  CAS  PubMed  Google Scholar 

  26. Smith C, Neher E (1997) Multiple forms of endocytosis in bovine adrenal chromaffin cells. J Cell Biol 139:885–894

    Article  CAS  PubMed  Google Scholar 

  27. Montero M, Alonso MT, Carnicero E, Cuchillo-Ibanez I, Albillos A, Garcia AG, Garcia-Sancho J, Alvarez J (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2:57–61

    Article  CAS  PubMed  Google Scholar 

  28. Giovannucci DR, Hlubek MD, Stuenkel EL (1999) Mitochondria regulate the Ca(2+)-exocytosis relationship of bovine adrenal chromaffin cells. J Neurosci 19:9261–9270

    CAS  PubMed  Google Scholar 

  29. Nucifora PG, Fox AP (1999) Tyrosine phosphorylation regulates rapid endocytosis in adrenal chromaffin cells. J Neurosci 19:9739–9746

    CAS  PubMed  Google Scholar 

  30. Fenwick EM, Marty A, Neher E (1982) Sodium and calcium channels in bovine chromaffin cells. J Physiol 331:599–635

    CAS  PubMed  Google Scholar 

  31. Zha X, Pierini LM, Leopold PL, Skiba PJ, Tabas I, Maxfield FR (1998) Sphingomyelinase treatment induces ATP-independent endocytosis. J Cell Biol 140:39–47

    Article  CAS  PubMed  Google Scholar 

  32. Strelow A, Bernardo K, Adam-Klages S, Linke T, Sandhoff K, Kronke M, Adam D (2000) Overexpression of acid ceramidase protects from tumor necrosis factor-induced cell death. J Exp Med 192:601–612

    Article  CAS  PubMed  Google Scholar 

  33. Ghosh TK, Bian J, Gill DL (1990) Intracellular calcium release mediated by sphingosine derivatives generated in cells. Science 248:1653–1656

    Article  CAS  PubMed  Google Scholar 

  34. Ghosh TK, Bian J, Gill DL (1994) Sphingosine 1-phosphate generated in the endoplasmic reticulum membrane activates release of stored calcium. J Biol Chem 269:22628–22635

    CAS  PubMed  Google Scholar 

  35. Chan SA, Chow R, Smith C (2003) Calcium dependence of action potential-induced endocytosis in chromaffin cells. Pflugers Arch 445:540–546

    CAS  PubMed  Google Scholar 

  36. Neher E, Zucker RS (1993) Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 10:21–30

    Article  CAS  PubMed  Google Scholar 

  37. Newcomb R, Szoke B, Palma A, Wang G, Chen X, Hopkins W, Cong R, Miller J, Urge L, Tarczy-Hornoch K, Loo JA, Dooley DJ, Nadasdi L, Tsien RW, Lemos J, Miljanich G (1998) Selective peptide antagonist of the class E calcium channel from the venom of the tarantula hysterocrates gigas. Biochemistry 37:15353–15362

    Article  CAS  PubMed  Google Scholar 

  38. Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE (1992) beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 12:376–389

    CAS  PubMed  Google Scholar 

  39. Wu LG, Betz WJ (1996) Nerve activity but not intracellular calcium determines the time course of endocytosis at the frog neuromuscular junction. Neuron 17:769–779

    Article  CAS  PubMed  Google Scholar 

  40. von Gersdorff H, Matthews G (1994) Inhibition of endocytosis by elevated internal calcium in a synaptic terminal. Nature 370:652–655

    Article  Google Scholar 

  41. de Champlain J, Farley L, Cousineau D, van Ameringen MR (1976) Circulating catecholamine levels in human and experimental hypertension. Circ Res 38:109–114

    PubMed  Google Scholar 

  42. Cuchillo-Ibáñez I, Lejen T, Albillos A, Rose SD, Olivares R, Villarroya M, García AG, Trifaró JM (2004) Mitochondrial calcium sequestration and protein kinase C cooperate in the regulation of cortical F-actin disassembly and secretion in bovine chromaffin cells. J Physiol 560:63–76

    Article  PubMed  Google Scholar 

  43. Neher E (1998) Vesicle pools and Ca2± microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20:389–399

    Article  CAS  PubMed  Google Scholar 

  44. Artalejo CR, Elhamdani A, Palfrey HC (2002) Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2-mediated slow endocytosis in chromaffin cells. Proc Natl Acad Sci USA 99:6358–6363

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported from the following grants from Spanish institutions to AGG: (1) SAF2006-03589, Ministerio de Ciencia e Innovación, Spain; (2) NDE 07/09, Agencia Laín Entralgo, Comunidad de Madrid; (3) PI016/09, Fundación C.I.E.N., Instituto de Salud Carlos III; (4) RD 06/0026 RETICS, Instituto de Salud Carlos III; (5) S-SAL-0275-2006, Comunidad de Madrid, also by grant SAF2007-65181, Ministerio de Ciencia e Innovación, Spain, to LG. We thank Fundación Teófilo Hernando for continued support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio G. García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosa, J.M., Gandía, L. & García, A.G. Permissive role of sphingosine on calcium-dependent endocytosis in chromaffin cells. Pflugers Arch - Eur J Physiol 460, 901–914 (2010). https://doi.org/10.1007/s00424-010-0861-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0861-x

Keywords

Navigation