Skip to main content

Advertisement

Log in

In vivo stimulation of AMP-activated protein kinase enhanced tubuloglomerular feedback but reduced tubular sodium transport during high dietary NaCl intake

  • Transport Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

AMP-activated protein kinase (AMPK) is expressed in the apical membrane of cortical thick ascending limb, distal, and collecting tubules as well as macula densa cells of the kidneys. AMPK is an active modulator of epithelial Na+ channels, Na+–2Cl–K+ cotransporter, and the ATP-dependent potassium channel. The present experiments explored whether AMPK participates in the regulation of tubuloglomerular feedback (TGF) and renal tubular sodium handling. To this end, renal clearance and micropuncture experiments were performed in anesthetized rats. Under normal NaCl diet, neither TGF response nor renal fluid and sodium excretion were altered by pharmacological activation of AMPK in vivo. However, under high NaCl diet, the TGF response was significantly enhanced after intravenous or intratubular application of the AMPK activator AICAR. Moreover, AICAR application significantly increased fractional delivery of fluid and sodium to the end of the proximal tubule. High dietary NaCl intake increased the renal transcript levels encoding the AMPK-α1 subunit, while it decreased the expression of AMPK-β1 and AMPK-γ2 subunits. Immunoblots revealed that high dietary NaCl intake reduced renal expression of activated AMPK by about three times compared to normal NaCl diet whereas additional AICAR application increased AMPK activity. Our results suggest that AMPK regulates tubuloglomerular balance as well as tubular transport upon change of renal work load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Carattino MD, Edinger RS, Grieser HJ, Wise R, Neumann D, Schlattner U, Johnson JP, Kleyman TR, Hallows KR (2005) Epithelial sodium channel inhibition by AMP-activated protein kinase in oocytes and polarized renal epithelial cells. J Biol Chem 280:17608–17616

    Article  CAS  PubMed  Google Scholar 

  2. Carling D (2004) The AMP-activated protein kinase cascade—a unifying system for energy control. Trends Biochem Sci 29:18–24

    Article  CAS  PubMed  Google Scholar 

  3. Cook N, Fraser SA, Katerelos M, Katsis F, Gleich K, Mount PF, Steinberg GR, Levidiotis V, Kemp BE, Power DA (2009) Low salt concentrations activate AMP-activated protein kinase in mouse macula densa cells. Am J Physiol Renal Physiol 296:F801–F809

    Article  CAS  PubMed  Google Scholar 

  4. Corton JM, Gillespie JG, Hardie DG (1994) Role of the AMP-activated protein kinase in the cellular stress response. Curr Biol 4:315–324

    Article  CAS  PubMed  Google Scholar 

  5. Festuccia WT, Laplante M, Brûlé S, Houde VP, Achouba A, Lachance D, Pedrosa ML, Silva ME, Guerra-Sá R, Couet J, Arsenault M, Marette A, Deshaies Y (2009) Rosiglitazone-induced heart remodelling is associated with enhanced turnover of myofibrillar protein and mTOR activation. J Mol Cell Cardiol 47:85–95

    Article  CAS  PubMed  Google Scholar 

  6. Fisslthaler B, Fleming I (2009) Activation and signaling by the AMP-activated protein kinase in endothelial cells. Circ Res 105:114–127

    Article  CAS  PubMed  Google Scholar 

  7. Fraser S, Mount P, Hill R, Levidiotis V, Katsis F, Stapleton D, Kemp BE, Power DA (2005) Regulation of the energy sensor AMP-activated protein kinase in the kidney by dietary salt intake and osmolality. Am J Physiol Renal Physiol 288:F578–F586

    Article  CAS  PubMed  Google Scholar 

  8. Fraser SA, Gimenez I, Cook N, Jennings I, Katerelos M, Katsis F, Levidiotis V, Kemp BE, Power DA (2007) Regulation of the renal-specific Na+-K+-2Cl co-transporter NKCC2 by AMP-activated protein kinase (AMPK). Biochem J 405:85–93

    CAS  PubMed  Google Scholar 

  9. Fryer LG, Parbu-Patel A, Carling D (2002) The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 277:25226–25232

    Article  CAS  PubMed  Google Scholar 

  10. Fujii N, Aschenbach WG, Musi N, Hirshman MF, Goodyear LJ (2004) Regulation of glucose transport by the AMP-activated protein kinase. Proc Nutr Soc 63:205–210

    Article  CAS  PubMed  Google Scholar 

  11. Hallows KR, Raghuram V, Kemp BE, Witters LA, Foskett JK (2000) Inhibition of cystic fibrosis transmembrane conductance regulator by novel interaction with the metabolic sensor AMP-activated protein kinase. J Clin Invest 105:1711–1721

    Article  CAS  PubMed  Google Scholar 

  12. Hallows KR, Kobinger GP, Wilson JM, Witters LA, Foskett JK (2003) Physiological modulation of CFTR activity by AMP-activated protein kinase in polarized T84 cells. Am J Physiol 284:C1297–C1308

    CAS  Google Scholar 

  13. Hardie DG (2004) The AMP-activated protein kinase pathway—new players upstream and downstream. J Cell Sci 117:5479–5487

    Article  CAS  PubMed  Google Scholar 

  14. Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1. Protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855

    Article  CAS  PubMed  Google Scholar 

  15. Hardie DG, Hawley SA (2001) AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 23:1112–1119

    Article  CAS  PubMed  Google Scholar 

  16. Hardie DG, Scott JW, Pan DA, Hudson ER (2003) Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett 546:113–120

    Article  CAS  PubMed  Google Scholar 

  17. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, Alessi DR, Hardie DG (2003) Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2:28

    Article  PubMed  Google Scholar 

  18. Hoppe S, Bierhoff H, Cado I, Weber A, Tiebe M, Grummt I, Voit R (2009) AMP-activated protein kinase adapts rRNA synthesis to cellular energy supply. Proc Natl Acad Sci 106:17781–17786

    Article  CAS  PubMed  Google Scholar 

  19. Huang DY, Boini KM, Grenz A, Osswald H (2006) Possible role of AMP-activated protein kinase in renal fluid and sodium handling during high salt diet. J Am Soc Nephrol 17:297A

    Google Scholar 

  20. Huang DY, Osswald H, Vallon V (1998) Intratubular application of sodium azide inhibits loop of Henle reabsorption and tubuloglomerular feedback response in anesthetized rats. Naunyn Schmiedebergs Arch Pharmacol 358:367–373

    Article  CAS  PubMed  Google Scholar 

  21. Huang DY, Osswald H, Vallon V (1999) Eukaliuric diuresis and natriuresis in response to the KATP channel blocker U37883A: micropuncture studies on the tubular site of action. British J Pharmacol 127:1811–1818

    Article  CAS  Google Scholar 

  22. Huang DY, Wulff P, Volkl H, Loffing J, Richter K, Kuhl D, Lang F, Vallon V (2004) Impaired regulation of renal K+ elimination in the sgk1-knockout mouse. J Am Soc Nephro 15:885–891

    Article  CAS  Google Scholar 

  23. Huang DY, Vallon V, Zimmermann H, Koszalka P, Schrader J, Osswald H (2006) Ecto-5′-nucleotidase (cd73)-dependent and-independent generation of adenosine participates in the mediation of tubuloglomerular feedback in vivo. Am J Physiol 291:F282–F288

    Article  CAS  Google Scholar 

  24. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    Article  CAS  PubMed  Google Scholar 

  25. Jansen M, Ten Klooster JP, Offerhaus GJ, Clevers H (2009) LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism. Physiol Rev 89:777–798

    Article  CAS  PubMed  Google Scholar 

  26. Kirchner S, Muduli A, Casirola D, Prum K, Douard V, Ferraris RP (2008) Luminal fructose inhibits rat intestinal sodium-phosphate cotransporter gene expression and phosphate uptake. Am J Clin Nutr 87:1028–1038

    CAS  PubMed  Google Scholar 

  27. Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89:1025–1078

    Article  CAS  PubMed  Google Scholar 

  28. Sukhodub A, Jovanović S, Du Q, Budas G, Clelland AK, Shen M, Sakamoto K, Tian R, Jovanović A (2007) AMP-activated protein kinase mediates preconditioning in cardiomyocytes by regulating activity and trafficking of sarcolemmal ATP-sensitive K(+) channels. J Cell Physiol 210:224–236

    Article  CAS  PubMed  Google Scholar 

  29. Thomson S, Bao D, Deng A, Vallon V (2000) Adenosine formed by 5′-nucleotidase mediates tubuloglomerular feedback. J Clin Invest 106:289–298

    Article  CAS  PubMed  Google Scholar 

  30. Unger RH (2004) The hyperleptinemia of obesity-regulator of caloric surpluses. Cell 117:145–146

    Article  CAS  PubMed  Google Scholar 

  31. Viollet B, Athea Y, Mounier R, Guigas B, Zarrinpashneh E, Horman S, Lantier L, Hebrard S, Devin-Leclerc J, Beauloye C, Foretz M, Andreelli F, Ventura-Clapier R, Bertrand L (2009) AMPK: lessons from transgenic and knockout animals. Front Biosci 14:19–44

    Article  CAS  PubMed  Google Scholar 

  32. Yang LE, Sandberg MB, Can AD, Pihakaski-Maunsbach K, McDonough AA (2008) Effects of dietary salt on renal Na+ transporters subcellular distribution, abundance, and phosphorylation status. Am J Physiol Renal Physiol 295:F1003–F1006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the DFG (HU1600/1-1 and HU1600/1-2).

Conflict-of-interest disclosure statement

All authors have read and approved the submission of the manuscript; the manuscript has not been published and is not being considered for publication elsewhere, in whole or in part, in any language, except as an abstract.

All authors state that there are no potential conflicts of interest in all relationships to the manuscript that could be perceived as real or apparent conflict(s).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Yang Huang.

Additional information

Dan Yang Huang and Huanhuan Gao shared first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, D.Y., Gao, H., Boini, K.M. et al. In vivo stimulation of AMP-activated protein kinase enhanced tubuloglomerular feedback but reduced tubular sodium transport during high dietary NaCl intake. Pflugers Arch - Eur J Physiol 460, 187–196 (2010). https://doi.org/10.1007/s00424-010-0803-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0803-7

Keywords

Navigation