Skip to main content

Advertisement

Log in

New developments in the signaling mechanisms of the store-operated calcium entry pathway

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The most ubiquitous pathway for regulated calcium (Ca2+) entry into the cells is the store-operated Ca2+ (SOC) entry pathway (also called capacitative Ca2+ entry) that is conserved from lower organisms such as yeast, worms, and flies to man. The SOC concept was proposed over two decades ago, and SOC channels are defined by their activation in response to depletion of the internal Ca2+ stores. Influx through SOC channels is necessary for the replenishment of the Ca2+ stores and is also involved in cell signaling to the nucleus. Despite intensive investigations, most of which are focusing on transient receptor potential (TRP) channels as molecular candidates for SOC channels, the mechanisms of activation and the identity of the key molecular players participating in this signaling pathway have long remained elusive. In the last 2–3 years, however, the improvements of RNA silencing protocols combined with high throughput platforms have yielded significant breakthroughs, with the identification of Stim1 as the Ca2+ store sensor and Orai1 (CRACM1) as the pore-forming subunit of the archetypical SOC channel, CRAC. This review summarizes the recent advances in the mechanisms of activation of SOC channels and their molecular composition, with emphasis on the roles of Stim, Orai, and TRP proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Albert AP, Saleh SN, Peppiatt-Wildman CM, Large WA (2007) Multiple activation mechanisms of store-operated TRPC channels in smooth muscle cells. J Physiol 583:25–36

    Article  PubMed  CAS  Google Scholar 

  2. Alicia S, Angelica Z, Carlos S, Alfonso S, Luis V (2008) STIM1 converts TRPC1 from a receptor-operated to a store-operated channel: moving TRPC1 in and out of lipid rafts. Cell Calcium (in press)

  3. Ambudkar IS (2007) TRPC1: a core component of store-operated calcium channels. Biochem Soc Trans 35:96–100

    Article  PubMed  CAS  Google Scholar 

  4. Ambudkar IS, Ong HL, Liu X, Bandyopadhyay B, Cheng KT (2007) TRPC1: the link between functionally distinct store-operated calcium channels. Cell calcium 42:213–223

    Article  PubMed  CAS  Google Scholar 

  5. Baba Y, Hayashi K, Fujii Y, Mizushima A, Watarai H, Wakamori M, Numaga T, Mori Y, Iino M, Hikida M, Kurosaki T (2006) Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci USA 103:16704–16709

    Article  PubMed  CAS  Google Scholar 

  6. Baba Y, Nishida K, Fujii Y, Hirano T, Hikida M, Kurosaki T (2008) Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses. Nat Immunol 9:81–88

    Article  PubMed  CAS  Google Scholar 

  7. Barritt GJ (1999) Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signalling requirements. Biochem J 337(Pt 2):153–169

    Article  PubMed  CAS  Google Scholar 

  8. Beech DJ (2005) TRPC1: store-operated channel and more. Pflugers Arch 451:53–60

    Article  PubMed  CAS  Google Scholar 

  9. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325

    Article  PubMed  CAS  Google Scholar 

  10. Berridge MJ (1995) Capacitative calcium entry. Biochem J 312(Pt 1):1–11

    PubMed  CAS  Google Scholar 

  11. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev 4:517–529

    Article  CAS  Google Scholar 

  12. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev 1:11–21

    Article  CAS  Google Scholar 

  13. Bird GS, Aziz O, Lievremont JP, Wedel BJ, Trebak M, Vazquez G, Putney JW Jr (2004) Mechanisms of phospholipase C-regulated calcium entry. Curr Mol Med 4:291–301

    Article  PubMed  CAS  Google Scholar 

  14. Birnbaumer L, Boulay G, Brown D, Jiang M, Dietrich A, Mikoshiba K, Zhu X, Qin N (2000) Mechanism of capacitative Ca2+ entry (CCE): interaction between IP3 receptor and TRP links the internal calcium storage compartment to plasma membrane CCE channels. Recent Prog Horm Res 55:127–161; discussion 161–122

    PubMed  CAS  Google Scholar 

  15. Bolotina VM, Csutora P (2005) CIF and other mysteries of the store-operated Ca2+-entry pathway. Trends Biochem Sci 30:378–387

    Article  PubMed  CAS  Google Scholar 

  16. Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131:1327–1339

    Article  PubMed  CAS  Google Scholar 

  17. Cahalan MD, Zhang SL, Yeromin AV, Ohlsen K, Roos J, Stauderman KA (2007) Molecular basis of the CRAC channel. Cell calcium 42:133–144

    Article  PubMed  CAS  Google Scholar 

  18. Csutora P, Peter K, Kilic H, Park KM, Zarayskiy V, Gwozdz T, Bolotina VM (2008) Novel role of STIM1 as a trigger for calcium influx factor (CIF) production. J Biol Chem

  19. Csutora P, Su Z, Kim HY, Bugrim A, Cunningham KW, Nuccitelli R, Keizer JE, Hanley MR, Blalock JE, Marchase RB (1999) Calcium influx factor is synthesized by yeast and mammalian cells depleted of organellar calcium stores. Proc Natl Acad Sci USA 96:121–126

    Article  PubMed  CAS  Google Scholar 

  20. DeHaven WI, Smyth JT, Boyles RR, Putney JW Jr (2007) Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J Biol Chem 282:17548–17556

    Article  PubMed  CAS  Google Scholar 

  21. Demaurex N, Frieden M (2003) Measurements of the free luminal ER Ca(2+) concentration with targeted “cameleon” fluorescent proteins. Cell calcium 34:109–119

    Article  PubMed  CAS  Google Scholar 

  22. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    Article  PubMed  CAS  Google Scholar 

  23. Feske S, Okamura H, Hogan PG, Rao A (2003) Ca2+/calcineurin signalling in cells of the immune system. Biochem Biophys Res Commun 311:1117–1132

    Article  PubMed  CAS  Google Scholar 

  24. Grigoriev I, Gouveia SM, van der Vaart B, Demmers J, Smyth JT, Honnappa S, Splinter D, Steinmetz MO, Putney JW Jr, Hoogenraad CC, Akhmanova A (2008) STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr Biol 18:177–182

    Article  PubMed  CAS  Google Scholar 

  25. Gross SA, Wissenbach U, Philipp SE, Freichel M, Cavalie A, Flockerzi V (2007) Murine ORAI2 splice variants form functional Ca2+ release-activated Ca2+ (CRAC) channels. J Biol Chem 282:19375–19384

    Article  PubMed  CAS  Google Scholar 

  26. Gwack Y, Srikanth S, Feske S, Cruz-Guilloty F, Oh-hora M, Neems DS, Hogan PG, Rao A (2007) Biochemical and functional characterization of Orai proteins. J Biol Chem 282:16232–16243

    Article  PubMed  CAS  Google Scholar 

  27. Hardie RC, Minke B (1993) Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci 16:371–376

    Article  PubMed  CAS  Google Scholar 

  28. Hewavitharana T, Deng X, Soboloff J, Gill DL (2007) Role of STIM and Orai proteins in the store-operated calcium signaling pathway. Cell calcium 42:173–182

    Article  PubMed  CAS  Google Scholar 

  29. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    Article  PubMed  CAS  Google Scholar 

  30. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356

    Article  PubMed  CAS  Google Scholar 

  31. Irvine RF (1990) ‘Quantal’ Ca2+ release and the control of Ca2+ entry by inositol phosphates—a possible mechanism. FEBS lett 263:5–9

    Article  PubMed  CAS  Google Scholar 

  32. Lewis RS (2001) Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol 19:497–521

    Article  PubMed  CAS  Google Scholar 

  33. Li Z, Lu J, Xu P, Xie X, Chen L, Xu T (2007) Mapping the interacting domains of STIM1 and Orai1 in Ca2+ release-activated Ca2+ channel activation. J Biol Chem 282:29448–29456

    Article  PubMed  CAS  Google Scholar 

  34. Liao Y, Erxleben C, Abramowitz J, Flockerzi V, Zhu MX, Armstrong DL, Birnbaumer L (2008) Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci USA 105:2895–2900

    Article  PubMed  CAS  Google Scholar 

  35. Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, Birnbaumer L (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci USA 104:4682–4687

    Article  PubMed  CAS  Google Scholar 

  36. Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci USA 104:9301–9306

    Article  PubMed  CAS  Google Scholar 

  37. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    Article  PubMed  CAS  Google Scholar 

  38. Lis A, Peinelt C, Beck A, Parvez S, Monteilh-Zoller M, Fleig A, Penner R (2007) CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr Biol 17:794–800

    Article  PubMed  CAS  Google Scholar 

  39. Luik RM, Lewis RS (2007) New insights into the molecular mechanisms of store-operated Ca2+ signaling in T cells. Trends Mol Med 13:103–107

    Article  PubMed  CAS  Google Scholar 

  40. Luik RM, Wu MM, Buchanan J, Lewis RS (2006) The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER–plasma membrane junctions. J Cell Biol 174:815–825

    Article  PubMed  CAS  Google Scholar 

  41. Manji SS, Parker NJ, Williams RT, van Stekelenburg L, Pearson RB, Dziadek M, Smith PJ (2000) STIM1: a novel phosphoprotein located at the cell surface. Biochim Biophys Acta 1481:147–155

    PubMed  CAS  Google Scholar 

  42. Melman YF, Krummerman A, McDonald TV (2002) KCNE regulation of KvLQT1 channels: structure-function correlates. Trends Cardiovasc Med 12:182–187

    Article  PubMed  CAS  Google Scholar 

  43. Mercer JC, Dehaven WI, Smyth JT, Wedel B, Boyles RR, Bird GS, Putney JW Jr (2006) Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 281:24979–24990

    Article  PubMed  CAS  Google Scholar 

  44. Mignen O, Thompson JL, Shuttleworth TJ (2007) STIM1 regulates Ca2+ entry via arachidonate-regulated Ca2+-selective (ARC) channels without store depletion or translocation to the plasma membrane. J Physiol 579:703–715

    Article  PubMed  CAS  Google Scholar 

  45. Mignen O, Thompson JL, Shuttleworth TJ (2008) Both Orai1 and Orai3 are essential components of the arachidonate-regulated Ca2+-selective (ARC) channels. J Physiol 586:185–195

    Article  PubMed  CAS  Google Scholar 

  46. Mignen O, Thompson JL, Shuttleworth TJ (2008) Orai1 subunit stoichiometry of the mammalian CRAC channel pore. J Physiol 586:419–425

    Article  PubMed  CAS  Google Scholar 

  47. Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323

    Article  PubMed  CAS  Google Scholar 

  48. Muik M, Frischauf I, Derler I, Fahrner M, Bergsmann J, Eder P, Schindl R, Hesch C, Polzinger B, Fritsch R, Kahr H, Madl J, Gruber H, Groschner K, Romanin C (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem

  49. Oh-Hora M, Yamashita M, Hogan PG, Sharma S, Lamperti E, Chung W, Prakriya M, Feske S, Rao A (2008) Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat Immunol 9:432–443

    Article  PubMed  CAS  Google Scholar 

  50. Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, Mori Y (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274:27359–27370

    Article  PubMed  CAS  Google Scholar 

  51. Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, Soboloff J, Pani B, Gwack Y, Srikanth S, Singh BB, Gill D, Ambudkar IS (2007) Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 282:9105–9116

    Article  PubMed  CAS  Google Scholar 

  52. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  PubMed  CAS  Google Scholar 

  53. Parvez S, Beck A, Peinelt C, Soboloff J, Lis A, Monteilh-Zoller M, Gill DL, Fleig A, Penner R (2008) STIM2 protein mediates distinct store-dependent and store-independent modes of CRAC channel activation. FASEB J 22:752–761

    Article  PubMed  CAS  Google Scholar 

  54. Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8:771–773

    Article  PubMed  CAS  Google Scholar 

  55. Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233

    Article  PubMed  CAS  Google Scholar 

  56. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell calcium 7:1–12

    Article  PubMed  CAS  Google Scholar 

  57. Putney JW Jr (1990) Capacitative calcium entry revisited. Cell calcium 11:611–624

    Article  PubMed  CAS  Google Scholar 

  58. Putney JW Jr (2007) Recent breakthroughs in the molecular mechanism of capacitative calcium entry (with thoughts on how we got here). Cell calcium 42:103–110

    Article  PubMed  CAS  Google Scholar 

  59. Randriamampita C, Tsien RY (1993) Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature 364:809–814

    Article  PubMed  CAS  Google Scholar 

  60. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    Article  PubMed  CAS  Google Scholar 

  61. Smani T, Zakharov SI, Csutora P, Leno E, Trepakova ES, Bolotina VM (2004) A novel mechanism for the store-operated calcium influx pathway. Nat Cell Biol 6:113–120

    Article  PubMed  CAS  Google Scholar 

  62. Smyth JT, DeHaven WI, Bird GS, Putney JW Jr (2007) Role of the microtubule cytoskeleton in the function of the store-operated Ca2+ channel activator STIM1. J Cell Sci 120:3762–3771

    Article  PubMed  CAS  Google Scholar 

  63. Smyth JT, Dehaven WI, Jones BF, Mercer JC, Trebak M, Vazquez G, Putney JW Jr (2006) Emerging perspectives in store-operated Ca(2+) entry: roles of Orai, Stim and TRP. Biochim Biophys Acta 1763:1147–1160

    Article  PubMed  CAS  Google Scholar 

  64. Soboloff J, Spassova MA, Hewavitharana T, He LP, Xu W, Johnstone LS, Dziadek MA, Gill DL (2006) STIM2 is an inhibitor of STIM1-mediated store-operated Ca2+ entry. Curr Biol 16:1465–1470

    Article  PubMed  CAS  Google Scholar 

  65. Soboloff J, Spassova MA, Tang XD, Hewavitharana T, Xu W, Gill DL (2006) Orai1 and STIM reconstitute store-operated calcium channel function. J Biol Chem 281:20661–20665

    Article  PubMed  CAS  Google Scholar 

  66. Spassova MA, Soboloff J, He LP, Xu W, Dziadek MA, Gill DL (2006) STIM1 has a plasma membrane role in the activation of store-operated Ca(2+) channels. Proc Natl Acad Sci USA 103:4040–4045

    Article  PubMed  CAS  Google Scholar 

  67. Stathopulos PB, Li GY, Plevin MJ, Ames JB, Ikura M (2006) Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: an initiation mechanism for capacitive Ca2+ entry. J Biol Chem 281:35855–35862

    Article  PubMed  CAS  Google Scholar 

  68. Takemura H, Hughes AR, Thastrup O, Putney JW Jr (1989) Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J Biol Chem 264:12266–12271

    PubMed  CAS  Google Scholar 

  69. Trebak M, Lemonnier L, Smyth JT, Vazquez G, Putney JW Jr (2007) Phospholipase C-coupled receptors and activation of TRPC channels. Handb Exp Pharmacol 179:593–614

    Article  PubMed  CAS  Google Scholar 

  70. Trebak M, St JBG, McKay RR, Birnbaumer L, Putney JW Jr (2003) Signaling mechanism for receptor-activated canonical transient receptor potential 3 (TRPC3) channels. J Biol Chem 278:16244–16252

    Article  PubMed  CAS  Google Scholar 

  71. Varnai P, Toth B, Toth DJ, Hunyady L, Balla T (2007) Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1–Orai1 complex. J Biol Chem 282:29678–29690

    Article  PubMed  CAS  Google Scholar 

  72. Venkatachalam K, Montell C (2007) TRP channels. Ann Rev Biochem 76:387–417

    Article  PubMed  CAS  Google Scholar 

  73. Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C, Koomoa DL, Soboloff J, Gill DL, Fleig A, Kinet JP, Penner R (2006) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16:2073–2079

    Article  PubMed  CAS  Google Scholar 

  74. Vig M, DeHaven WI, Bird GS, Billingsley JM, Wang H, Rao PE, Hutchings AB, Jouvin MH, Putney JW, Kinet JP (2008) Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat Immunol 9:89–96

    Article  PubMed  CAS  Google Scholar 

  75. Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223

    Article  PubMed  CAS  Google Scholar 

  76. Wissenbach U, Philipp SE, Gross SA, Cavalie A, Flockerzi V (2007) Primary structure, chromosomal localization and expression in immune cells of the murine ORAI and STIM genes. Cell calcium 42:439–446

    Article  PubMed  CAS  Google Scholar 

  77. Wu MM, Buchanan J, Luik RM, Lewis RS (2006) Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J Cell Biol 174:803–813

    Article  PubMed  CAS  Google Scholar 

  78. Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443:226–229

    Article  PubMed  CAS  Google Scholar 

  79. Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S (2007) STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9:636–645

    Article  PubMed  CAS  Google Scholar 

  80. Zhang SL, Kozak JA, Jiang W, Yeromin AV, Chen J, Yu Y, Penna A, Shen W, Chi V, Cahalan MD (2008) Store-dependent and -independent modes regulating CRAC channel activity of human Orai1 and Orai3. J Biol Chem

  81. Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci USA 103:9357–9362

    Article  PubMed  CAS  Google Scholar 

  82. Zheng L, Stathopulos PB, Li GY, Ikura M (2007) Biophysical characterization of the EF-hand and SAM domain containing Ca(2+) sensory region of STIM1 and STIM2. Biochem Biophys Res Commun

Download references

Acknowledgments

Work in the authors’ laboratory is supported by start up funds from the Albany Medical College, NY and by an early career NIH grant to M.T. (K22ES014729).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Trebak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potier, M., Trebak, M. New developments in the signaling mechanisms of the store-operated calcium entry pathway. Pflugers Arch - Eur J Physiol 457, 405–415 (2008). https://doi.org/10.1007/s00424-008-0533-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0533-2

Keywords

Navigation