Skip to main content
Log in

Ionic mechanism of ouabain-induced swelling of leech Retzius neurons

  • Cell and molecular physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

By using electrophysiological and microfluorimetric methods, we found that leech Retzius neurons swell after inhibition of the Na+–K+ pump by the cardiac glycoside ouabain. To explore the mechanism of this swelling, we measured the effect of ouabain on [Na+]i, [K+]i, and [Cl]i, as well as on the membrane potential, by applying triple-barrelled ion-sensitive microelectrodes. As shown previously, ouabain induced a marked [Na+]i increase, a [K+]i decrease, and a membrane depolarization, and it also evoked an increase in [Cl]i. The analysis of the data revealed a net uptake of NaCl, which quantitatively explained the ouabain-induced cell swelling. In the absence of extracellular Na+ or Cl, NaCl uptake was excluded, and the cell volume remained unaffected. Likewise, NaCl uptake and, hence, cell swelling did not occur when the Na+–K+ pump was inhibited by omitting bath K+. Also, in K+-free solution, [Na+]i increased and [K+]i dropped, but [Cl]i slightly decreased, and after an initial, small membrane depolarization, the cells hyperpolarized for a prolonged period. It is concluded that the ouabain-induced NaCl uptake is caused by the depolarization of the plasma membrane, which augments the inwardly directed electrochemical Cl gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abrahamse SL, Rechkemmer G (2001) Identification of an organic anion transport system in the human colon carcinoma cell line HT29 clone 19A. Pflügers Arch 441:529–537

    Article  PubMed  CAS  Google Scholar 

  2. Altamirano J, Brodwick MS, Alvarez-Leefmans FJ (1998) Regulatory volume decrease and intracellular Ca2+ in murine neuroblastoma cells studied with fluorescent probes. J Gen Physiol 112:145–160

    Article  PubMed  CAS  Google Scholar 

  3. Alvarez-Leefmans FJ, Cruzblanca H, Gamino SM, Altamirano J, Nani A, Reuss L (1994) Transmembrane ion movements elicited by sodium pump inhibition in Helix aspersa neurons. J Neurophysiol 71:1787–1796

    PubMed  CAS  Google Scholar 

  4. Ammann D (1986) Ion-selective microelectrodes. Springer, Berlin Heidelberg New York

  5. Angstadt JD (1999) Persistent inward currents in cultured Retzius cells of the medicinal leech. J Comp Physiol A 184:49–61

    Article  PubMed  CAS  Google Scholar 

  6. Armstrong CM (2003) The Na/K pump, Cl ion, and osmotic stabilization of cells. Proc Natl Acad Sci U S A 100:6257–6262

    Article  PubMed  CAS  Google Scholar 

  7. Bancel F, Salmon JM, Vigo J, Vo-Dinh T, Viallet P (1992) Investigation of noncalcium interactions of fura-2 by classical and synchronous fluorescence spectroscopy. Anal Biochem 204:231–238

    Article  PubMed  CAS  Google Scholar 

  8. Beck A, Lohr C, Nett W, Deitmer JW (2001) Bursting activity in leech Retzius neurons induced by low external chloride. Pflügers Arch 442:263–272

    Article  PubMed  CAS  Google Scholar 

  9. Bookman RJ, Liu Y (1990) Analysis of calcium channel properties in cultured leech Retzius cells by internal perfusion, voltage-clamp and single-channel recording. J Exp Biol 149:223–237

    PubMed  CAS  Google Scholar 

  10. Coulon P, Dierkes PW, Hochstrate P, Schlue WR (2005) Swelling-activated chloride channels in leech Retzius neurones. In: Proc Göttingen NWG Conf 2005, 315B

  11. Crowe WE, Altamirano J, Huerto L, Alvarez-Leefmans FJ (1995) Volume changes in single N1E-115 neuroblastoma cells measured with a fluorescent probe. Neuroscience 69:283–296

    Article  PubMed  CAS  Google Scholar 

  12. Deitmer JW, Schlue WR (1981) Measurements of the intracellular potassium activity of Retzius cells in the leech central nervous system. J Exp Biol 91:87–101

    CAS  Google Scholar 

  13. Deitmer JW, Schlue WR (1983) Intracellular Na+ and Ca2+ in leech Retzius neurones during inhibition of the Na+–K+ pump. Pflügers Arch 397:195–201

    Article  PubMed  CAS  Google Scholar 

  14. Dierkes PW, Hochstrate P, Schlue WR (1997) Voltage-dependent Ca2+ influx into identified leech neurones. Brain Res 746:285–293

    Article  PubMed  CAS  Google Scholar 

  15. Dierkes PW, Coulon P, Neumann S, Schlue WR (2002) Potentiometric measurement of cell volume changes and intracellular ion concentrations under voltage-clamp conditions in invertebrate nerve cells. Anal Bioanal Chem 373:762–766

    Article  PubMed  CAS  Google Scholar 

  16. Dierkes PW, Neumann S, Klees G, Schlue WR (2003) Multi-barrelled ion-selective microelectrodes as tools for the investigation of volume regulation mechanisms in invertebrate nerve cells under hyperosmotic conditions. Electrochim Acta 48:3373–3380

    Article  CAS  Google Scholar 

  17. Dierkes PW, Wende V, Hochstrate P, Schlue WR (2004) L-type Ca2+ channel antagonists block voltage-dependent Ca2+ channels in identified leech neurons. Brain Res 1013:159–167

    Article  PubMed  CAS  Google Scholar 

  18. Fraser JA, Huang CLH (2004) A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells. J Physiol 559:459–478

    Article  PubMed  CAS  Google Scholar 

  19. Gellert W, Küstner H, Hellwich M, Kästner H (1969) Grosses Handbuch der Mathematik. Buch und Zeit Verlagsgesellschaft, Köln

  20. Glitsch HG (2001) Electrophysiology of the sodium–potassium-ATPase in cardiac cells. Physiol Rev 81:1791–1826

    PubMed  CAS  Google Scholar 

  21. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  22. Hochstrate P, Schlue WR (1994) Ca2+ influx into leech glial cells and neurones caused by pharmacologically distinct glutamate receptors. Glia 12:268–280

    Article  PubMed  CAS  Google Scholar 

  23. Hochstrate P, Piel C, Schlue WR (1995) Effect of extracellular K+ on the intracellular free Ca2+ concentration in leech glial cells and Retzius neurones. Brain Res 696:231–241

    Article  PubMed  CAS  Google Scholar 

  24. Hochstrate P, Schlue WR (2001) The ouabain-induced [Ca2+]i increase in leech Retzius neurones is mediated by voltage-dependent Ca2+ channels. Brain Res 892:248–254

    Article  PubMed  CAS  Google Scholar 

  25. Hochstrate P, Dierkes PW, Kilb W, Schlue WR (2001) Modulation of Ca2+ influx in Retzius neurons. I. Effect of extracellular pH. J Membr Biol 184:13–25

    Article  PubMed  CAS  Google Scholar 

  26. Hochstrate P, Dierkes PW, Kilb W, Schlue WR (2001) Modulation of Ca2+ influx in Retzius neurons. II. Effect of extracellular Ca2+. J Membr Biol 184:27–33

    Article  PubMed  CAS  Google Scholar 

  27. Klees G (2005) Ionale Mechanismen von Volumenänderungen identifizierter Neuronen im Zentralnervensystem des medizinischen Blutegels. Doctoral thesis, Heinrich-Heine-Universität Düsseldorf

  28. Kilb W, Schlue WR (1999) Mechanism of the kainate-induced intracellular acidification in leech Retzius neurons. Brain Res 824:168–182

    Article  PubMed  CAS  Google Scholar 

  29. Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, Häussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    PubMed  CAS  Google Scholar 

  30. Macknight ADC, Leaf A (1977) Regulation of cellular volume. Physiol Rev 57:510–573

    PubMed  CAS  Google Scholar 

  31. Mercado A, Mount DB, Gamba G (2004) Electroneutral cation-chloride cotransporters in the central nervous system. Neurochem Res 29:17–25

    Article  PubMed  CAS  Google Scholar 

  32. Muallem S, Zhang BX, Loessberg PA, Star RA (1992) Simultaneous recording of cell volume changes and intracellular pH or Ca2+ concentration in single osteosarcoma cells UMR-106-01. J Biol Chem 267:17658–17664

    PubMed  CAS  Google Scholar 

  33. Mullins LJ, Noda K (1963) The influence of sodium-free solutions on the membrane potential of frog muscle fibers. J Gen Physiol 47:117–132

    Article  PubMed  CAS  Google Scholar 

  34. Munsch T, Schlue WR (1993) Intracellular chloride activity and the effect of 5-hydroxytryptamine on the chloride conductance of leech Retzius neurons. Eur J Neurosci 5:1551–1557

    Article  PubMed  CAS  Google Scholar 

  35. Neumann S, Dierkes PW, Schlue WR (2001) Potentiometric measurement of cell volume changes and intracellular ion concentrations in leech Retzius neurones. Electrochim Acta 47:309–317

    Article  CAS  Google Scholar 

  36. Reuss L (1985) Changes in cell volume measured with an electrophysiologic technique. Proc Natl Acad Sci U S A 82:6014–6018

    Article  PubMed  CAS  Google Scholar 

  37. Schlue WR, Deitmer JW (1980) Extracellular potassium in neuropile and nerve cell body region of the leech central nervous system. J Exp Biol 87:23–43

    PubMed  CAS  Google Scholar 

  38. Stewart RR, Nicholls JG, Adams WB (1989) Na+, K+ and Ca2+ currents in identified leech neurones in culture. J Exp Biol 141:1–20

    PubMed  CAS  Google Scholar 

  39. Vaughan-Jones RD (1986) An investigation of chloride–bicarbonate exchange in the sheep cardiac Purkinje fibre. J Physiol 379:377–406

    PubMed  CAS  Google Scholar 

  40. Wehner F, Olsen H, Tinel H, Kinne-Saffran E, Kinne RKH (2003) Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. Rev Physiol Biochem Pharmacol 148:1–80

    Article  PubMed  CAS  Google Scholar 

  41. Wüsten J (2003) Zellvolumen-Regulation und Änderungen intrazellulärer Ionenkonzentrationen in Retzius- und P-Neuronen des medizinischen Blutegels. Doctoral thesis, Heinrich-Heine-Universität Düsseldorf

  42. Xie Z, Askari A (2002) Na+/K+-ATPase as a signal transducer. Eur J Biochem 269:2434–2439

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the DFG Graduiertenkolleg “Pathophysiologische Prozesse im Gehirn: vom Gen zum Verhalten.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Wilhelm Dierkes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dierkes, P.W., Wüsten, H.J., Klees, G. et al. Ionic mechanism of ouabain-induced swelling of leech Retzius neurons. Pflugers Arch - Eur J Physiol 452, 25–35 (2006). https://doi.org/10.1007/s00424-005-0009-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-0009-6

Keywords

Navigation