Skip to main content
Log in

Computational model of motor learning and perceptual change

  • Opinion Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Motor learning in the context of arm reaching movements has been frequently investigated using the paradigm of force-field learning. It has been recently shown that changes to somatosensory perception are likewise associated with motor learning. Changes in perceptual function may be the reason that when the perturbation is removed following motor learning, the hand trajectory does not return to a straight line path even after several dozen trials. To explain the computational mechanisms that produce these characteristics, we propose a motor control and learning scheme using a simplified two-link system in the horizontal plane: We represent learning as the adjustment of desired joint-angular trajectories so as to achieve the reference trajectory of the hand. The convergence of the actual hand movement to the reference trajectory is proved by using a Lyapunov-like lemma, and the result is confirmed using computer simulations. The model assumes that changes in the desired hand trajectory influence the perception of hand position and this in turn affects movement control. Our computer simulations support the idea that perceptual change may come as a result of adjustments to movement planning with motor learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aström K, Wittenmark B (1989) Adaptive control. Addison-Wesley, Boston

    Google Scholar 

  • Bernier P, Burle B, Vidal F, Hasbroucq T, Blouin J (2009) Direct evidence for cortical suppression of somatosensory afferents during visuomotor adaptation. Cereb Cortex 19(9):2106–2113

    Article  PubMed  Google Scholar 

  • Berret B, Chiovetto E, Nori F, Pozzo T (2011) Manifold reaching paradigm: how do we handle target redundancy? J Neurophysiol 106(4):2086–2102

    Google Scholar 

  • Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81(1):39–60

    Article  PubMed  CAS  Google Scholar 

  • Chien M-C, Huang A-C (2004) Adaptive impedance control of robot manipulators based on function approximation technique. Robotica 22(4):395–403

    Article  Google Scholar 

  • Darainy M, Mattar AAG, Ostry DJ (2009) Effects of human arm impedance on dynamics learning and generalization. J Neurophysiol 101(6):3158

    Article  PubMed  Google Scholar 

  • Davidson P, Wolpert D (2004) Scaling down motor memories: de-adaptation after motor learning. Neurosci Lett 370(2):102–107

    Article  PubMed  CAS  Google Scholar 

  • Flash T (1987) The control of hand equilibrium trajectories in multi-joint arm movements. Biol Cybern 57(4):257–274

    Article  PubMed  CAS  Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5(7):1688

    PubMed  CAS  Google Scholar 

  • Galicki M (2007) Adaptive path-constrained control of a robotic manipulator in a task space. Robotica 25(1):103–112

    Article  Google Scholar 

  • Gomi H, Kawato M (1996) Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement. Science 272(5258):117

    Article  PubMed  CAS  Google Scholar 

  • Gribble PL, Ostry DJ, Sanguineti V, Laboissière R (1998) Are complex control signals required for human arm movement? J Neurophysiol 79(3):1409

    PubMed  CAS  Google Scholar 

  • Huang S, Tan K, Lee T (2008) Adaptive neural network algorithm for control design of rigid-link electrically driven robots. Neurocomputing 71(4–6):885–894

    Article  Google Scholar 

  • Ito S, Aoyama Y, Kawasaki H (2003) A static balance control under periodic external force. In: SICE 2003 annual conference, pp 600–605

  • Ito S, Kawasaki H (2005) Regularity in an environment produces an internal torque pattern for biped balance control. Biol Cybern 92(4):241–251

    Article  PubMed  Google Scholar 

  • Izawa J, Rane T, Donchin O, Shadmehr R (2008) Motor adaptation as a process of reoptimization. J Neurosci 28(11):2883–2891

    Article  PubMed  CAS  Google Scholar 

  • Kambara H, Kim K, Shin D, Sato M, Koike Y (2009) Learning and generation of goal-directed arm reaching from scratch. Neural Netw 22(4):348–361

    Article  PubMed  Google Scholar 

  • Katayama M, Kawato M (1993) Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models. Biol Cybern 69(5):353–362

    PubMed  CAS  Google Scholar 

  • Kistemaker DA, Soest AKJV, Bobbert MF (2007) Equilibrium point control cannot be refuted by experimental reconstruction of equilibrium point trajectories. J Neurophysiol 98(3):1075

    Article  PubMed  Google Scholar 

  • Malfait N, Shiller D, Ostry D (2002) Transfer of motor learning across arm configurations. J Neurosci 22(22):9656–9660

    PubMed  CAS  Google Scholar 

  • Massone L, Bizzi E (1989) A neural network model for limb trajectory formation. Biol Cybern 61(6):417–425

    Google Scholar 

  • Mitrovic D, Klanke S, Vijayakumar S (2011) Learning impedance control of antagonistic systems based on stochastic optimization principles. Int J Robotics Res 30(5):556

    Article  Google Scholar 

  • Miyamoto H, Kawato M, Setoyama T, Suzuki R (1988) Feedback-error-learning neural network for trajectory control of a robotic manipulator. Neural Netw 1(3):251–265

    Article  Google Scholar 

  • Mussa-Ivaldi F, Hogan N, Bizzi E (1985) Neural, mechanical, and geometric factors subserving arm posture in humans. J Neurosci 5(10):2732–2743

    PubMed  CAS  Google Scholar 

  • Nguyen-Tuong D, Peters J (2011) Model learning for robot control: a survey. Cogn Process 12(4):319–340

    Google Scholar 

  • Ostry DJ, Darainy M, Mattar AAG, Wong J, Gribble P (2010) Somatosensory plasticity and motor learning. J Neurosci 30(15):5384

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14(5):3208

    PubMed  CAS  Google Scholar 

  • Slotine J-JE, Li W (1987) On the adaptive control of robot manipulators. Int J Robotics Res 6(3):49

    Article  Google Scholar 

  • Slotine J-JE, Li W (1991) Applied nonlinear control, vol 66. Prentice hall, Englewood Cliffs

    Google Scholar 

  • Sutton R, Barto A (1998) Reinforcement learning: an introduction, vol 116. Cambridge University Press, Cambridge

    Google Scholar 

  • Tee KP, Franklin DW, Kawato M, Milner TE, Burdet E (2010) Concurrent adaptation of force and impedance in the redundant muscle system. Biol Cybern 102(1):31–44

    Article  PubMed  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5(11):1226–1235

    Article  PubMed  CAS  Google Scholar 

  • Todorov E, Jordan MI (1998) Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements. J Neurophysiol 80(2):696

    PubMed  CAS  Google Scholar 

  • Tsuji T, Morasso PG, Goto K, Ito K (1995) Human hand impedance characteristics during maintained posture. Biol Cybern 72(6):475–485

    Article  PubMed  CAS  Google Scholar 

  • Uno Y, Kawato M, Suzuki R (1989) Formation and control of optimal trajectory in human multijoint arm movement. Biol Cybern 61(2):89–101

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269(5232):1880

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institute of Child Health and Human Development (R01-HD075740) and by Le Fonds Quebecois de la Recherche sur la Nature et les Technologies (Quebec). Conflict of interest The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Ito.

Appendices

Appendix 1: 2-link system dynamics and kinematics

The 2-link dynamics of the arm in the horizontal plane are described as follows:

$$\begin{aligned} {M}(\varvec{\theta }) {\varvec{\ddot{\theta }}} + {C}(\varvec{\theta }, {\varvec{\dot{\theta }}}) {\varvec{\dot{\theta }}} = \varvec{\tau } \end{aligned}$$
(39)

Here, \({M}(\varvec{\theta })\) and \(C(\varvec{\theta }, {\varvec{\dot{\theta }}})\) are given as follows:

$$\begin{aligned} {M}(\varvec{\theta })&= \left[ \begin{array}{cc} M_{11} &{} M_{12} \\ M_{21} &{} M_{22} \end{array} \right] \end{aligned}$$
(40)
$$\begin{aligned} {C}(\varvec{\theta }, {\varvec{\dot{\theta }}})&= \left[ \begin{array}{cc} C_{11} &{} C_{12} \\ C_{21} &{} C_{22} \end{array} \right] \end{aligned}$$
(41)
$$\begin{aligned} M_{11}&= I_0 + I_1 + m_0 \ell _0^2 + m_1 L_0^2 +m_1 \ell _1^2\nonumber \\&\quad + 2 m_1 L_0 \ell _1 \cos \theta _1 \end{aligned}$$
(42)
$$\begin{aligned} M_{12} = M_{21}&= I_1 + m_1 \ell _1^2 + m_1 L_0 \ell _1 \cos \theta _1 \end{aligned}$$
(43)
$$\begin{aligned} M_{22}&= I_1 + m_1 \ell _1^2 \end{aligned}$$
(44)
$$\begin{aligned} C_{11}&= - m_1 L_0 \ell _1 \dot{\theta }_1\sin \theta _1 \end{aligned}$$
(45)
$$\begin{aligned} C_{12}&= - m_1 L_0 \ell _1 (\dot{\theta }_0 + \dot{\theta }_1) \sin \theta _1 \end{aligned}$$
(46)
$$\begin{aligned} C_{21}&= m_1 L_0 \ell _1 \dot{\theta }_0\sin \theta _1 \end{aligned}$$
(47)
$$\begin{aligned} C_{22}&= 0 \end{aligned}$$
(48)

As shown in Fig. 2, \(\theta _i\) denotes joint angle, \(L_i\) is link length, \(\ell _i\) is the distance to center of mass of the link, \(m_{i}\) is mass of the link, \(I_i\) is the moment of inertia about the center of mass, \(\tau _i\) denotes joint torque and \(i\) distinguishes the shoulder \((i=0)\) and the elbow \((i=1)\). The operation \(\dot{}\) denotes time derivative.

Note here that the left side of Eq. (39) can be described as the product of \({Y}_L\) and \(\varvec{\sigma }_L\) as shown in (7). In the case of 2-link arm dynamics, they are given as

$$\begin{aligned}&{{Y}_{L}(\varvec{\theta }, {\varvec{\dot{\theta }}}, {\varvec{\dot{\theta }}}_{ r}, {\varvec{\ddot{\theta }}}_{ r})} =\nonumber \\&\left[ \begin{array}{cccc} \ddot{\theta }_{r0} &{} (\ddot{\theta }_{r0} + 2 \ddot{\theta }_{r1}) \cos \theta _1 + \dot{\theta }_{r1} (2 \dot{\theta }_0 +\dot{\theta }_1) \sin \theta _1 &{} \ddot{\theta }_{r1} \\ 0 &{}2 \ddot{\theta }_{r0} \cos \theta _1 - \dot{\theta }_{r0}^2 \sin \theta _1 &{} \ddot{\theta }_{r0} \!+\! \ddot{\theta }_{r1} \end{array}\right] \nonumber \\ \end{aligned}$$
(49)
$$\begin{aligned}&\varvec{\sigma }_L = \left[ \begin{array}{cccc} \sigma _{L1}&\sigma _{L2}&\sigma _{L3} \end{array}\right] ^T \end{aligned}$$
(50)
$$\begin{aligned}&\sigma _{L1} = I_0 + I_1 + m_0 \ell _0^2 + m_1 L_0^2 +m_1 \ell _1^2 \end{aligned}$$
(51)
$$\begin{aligned}&\sigma _{L2} = m_1 L_0 \ell _1 \end{aligned}$$
(52)
$$\begin{aligned}&\sigma _{L3} = I_1 \!+\! m_1 \ell _1^2 \end{aligned}$$
(53)

Then, the following equation holds using \({\varvec{\hat{\sigma }}}_L\):

$$\begin{aligned} {Y}_L (\varvec{\theta }, {\varvec{\dot{\theta }}}, {\varvec{\dot{\theta }}}_r, {\varvec{\ddot{\theta }}}_r) {\varvec{\hat{\sigma }}}_L = {\hat{ M}}(\varvec{\theta }) {\varvec{\ddot{\theta }}}_{r} + {\hat{ C}}(\varvec{\theta }, {\varvec{\dot{\theta }}}) {\varvec{\dot{\theta }}}_{r} \end{aligned}$$
(54)

\({\hat{M}}(\varvec{\theta })\) and \({\hat{C}}(\varvec{\theta }, {\varvec{\dot{\theta }}})\), the estimates of \({M}(\varvec{\theta })\) and \({C}(\varvec{\theta },{\varvec{\dot{\theta }}})\), respectively.

On the other hand, the relationship between hand position and joint angles is given as follows:

$$\begin{aligned} x_e&= L_0 \cos \theta _0 + L_1 \cos (\theta _0 + \theta _1) \end{aligned}$$
(55)
$$\begin{aligned} y_e&= L_0 \sin \theta _0 + L_1 \sin (\theta _0 + \theta _1) \end{aligned}$$
(56)

Hand velocity are related to joint velocities by the Jacobian matrix \(J(\varvec{\theta }) \) as follows:

$$\begin{aligned} \dot{{\varvec{p}}} = {J} (\varvec{\theta }) {\varvec{\dot{\theta }}} \end{aligned}$$
(57)

where

$$\begin{aligned} \varvec{p} = \left[ \begin{array}{cc} x_e&y_e \end{array}\right] ^T \end{aligned}$$
(58)

and

$$\begin{aligned} {J}(\varvec{\theta }) = \left[ \begin{array}{rr} -L_0 \sin \theta _0 - L_1 \sin (\theta _0 + \theta _1) &{} - L_1 \sin (\theta _0 + \theta _1) \\ L_0 \cos \theta _0 + L_1 \cos (\theta _0 + \theta _1) &{} L_1 \cos (\theta _0 + \theta _1) \end{array}\right] \nonumber \\ \end{aligned}$$
(59)

Appendix 2: Calculation of control law

Using (9), \({\varvec{\dot{\theta }}}_r\) becomes

$$\begin{aligned} {\varvec{\dot{\theta }}}_r&= {\varvec{\dot{\theta }}}_d + {K_a} (\varvec{\theta }_d - \varvec{\theta }) \nonumber \\&= {\varvec{\dot{\theta }}}_d^*+ \varDelta {\varvec{\dot{\theta }}}_d^*+ {K_a} (\varvec{\theta }_d^*+ \varDelta \varvec{\theta }_d^*- \varvec{\theta }) \nonumber \\&= {\varvec{\dot{\theta }}}_r^*+ \varDelta {\varvec{\dot{\theta }}}_r^*\end{aligned}$$
(60)

where

$$\begin{aligned} \varDelta {\varvec{\dot{\theta }}}_r^*= \varDelta {\varvec{\dot{\theta }}}_d^*+ {K_a} \varDelta \varvec{\theta }_d^*\end{aligned}$$
(61)

Assuming that all the dynamical parameters are known, the control law (3) can be rewritten as follows:

$$\begin{aligned} \varvec{\tau }&= {M}(\varvec{\theta }) {\varvec{\ddot{\theta }}}_{r} + {C}(\varvec{\theta }, {\varvec{\dot{\theta }}}) {\varvec{\dot{\theta }}}_{ r} - {K}_{ d} ({\varvec{\dot{\theta }}} - {\varvec{\dot{\theta }}}_{ r}) \nonumber \\&= { M}(\varvec{\theta }) {\varvec{\ddot{\theta }}}_{ r}^*+ { C}(\varvec{\theta }, {\varvec{\dot{\theta }}}) {\varvec{\dot{\theta }}}_{r}^*\nonumber \\&+ {M}(\varvec{\theta }) \varDelta {\varvec{\ddot{\theta }}}_{r}^*+ ({C}(\varvec{\theta }, {\varvec{\dot{\theta }}}) + { K}_{ d} )\varDelta {\varvec{\dot{\theta }}}_{ r}^*\nonumber \\&- { K}_{ d} ({\varvec{\dot{\theta }}} - {\varvec{\dot{\theta }}}_{ r}^*) \nonumber \\&= { Y}_{ L}(\varvec{\theta }, {\varvec{\dot{\theta }}}, {\varvec{\dot{\theta }}}_{ r}^*, {\varvec{\ddot{\theta }}}_{ r}^*) \varvec{\sigma }_{ L} \nonumber \\&+ [{ M}(\varvec{\theta }) \varDelta {\varvec{\ddot{\theta }}}_{ r}^*+ ({ C}(\varvec{\theta }, {\varvec{\dot{\theta }}}) + { K}_{ d} )\varDelta {\varvec{\dot{\theta }}}_{ r}^*] \nonumber \\&- { K}_{ d} \varvec{s} \end{aligned}$$
(62)

It can be seen from Eq. (61) that the second term in Eq. (62) is a function of \(\varDelta \varvec{\theta }_d^*,\,\varDelta {\varvec{\dot{\theta }}}_d^*\), and \(\varDelta {\varvec{\ddot{\theta }}}_d^*\). If we compare Eq. (10) with Eq. (62), the second term of (10) will be written as follows using (13)

$$\begin{aligned}&\varvec{\tau }_{\varDelta }(\varDelta \varvec{\theta }_{ d}^*, \varDelta {\varvec{\dot{\theta }}}_{ d}^*, \varDelta {\varvec{\ddot{\theta }}}_{ d}^*) \nonumber \\&= [{ M}(\varvec{\theta }) \varDelta {\varvec{\ddot{\theta }}}_{ r}^*+ ({ C}(\varvec{\theta }, {\varvec{\dot{\theta }}}) + { K}_{ d} )\varDelta {\varvec{\dot{\theta }}}_{ r}^*] \nonumber \\&= { M}(\varvec{\theta }) (\varDelta {\varvec{\ddot{\theta }}}_{ d}^*+ { K_a} \varDelta {\varvec{\dot{\theta }}}_{ d}^*) \nonumber \\&\quad + ({ C}(\varvec{\theta }, {\varvec{\dot{\theta }}}) + { K}_{ d} ) (\varDelta {\varvec{\dot{\theta }}}_{ d}^*+ { K_a} \varDelta \varvec{\theta }_{ d}^*) \nonumber \\&= { M}(\varvec{\theta }) \varDelta {\varvec{\ddot{\theta }}}_{ d}^*+ ({ M}(\varvec{\theta }) { K_a} + { C}(\varvec{\theta }, {\varvec{\dot{\theta }}}) + { K}_{ d}) \varDelta {\varvec{\dot{\theta }}}_{ d}^*\nonumber \\&+ ({ C}(\varvec{\theta }, {\varvec{\dot{\theta }}}) + { K}_{ d} ) { K_a} \varDelta \varvec{\theta }_{ d}^*\nonumber \\&= { M}({\varvec{\theta }}) {\ddot{{Y}}}_\phi (t) {\varvec{\sigma }}_{ c} + ({ M}(\varvec{\theta }) { K}_{ a} + { C}({\varvec{\theta }}, {\varvec{\dot{\theta }}}) + { K}_{ d}){\dot{{Y}}}_\phi (t) {\varvec{\sigma }}_{ c}\nonumber \\&+ ({ C}(\varvec{\theta }, {\varvec{\dot{\theta }}}) + { K}_{ d} ) { K_a} { Y}_\phi (t) \varvec{\sigma }_{ c} \nonumber \\&= { Y}_\psi (t) {\varvec{\sigma }}_{ c} \end{aligned}$$
(63)

where

$$\begin{aligned} { Y}_\psi (t)&= { M}(\varvec{\theta }) {\ddot{{Y}}}_\phi (t) + ({ M}({\varvec{\theta }}) { K}_{ a} + { C}({\varvec{\theta }}, {\varvec{\dot{\theta }}}) + { K}_{ d}) {\dot{{Y}}}_\phi (t) \nonumber \\&+ ({ C}({\varvec{\theta }}, {\varvec{\dot{\theta }}}) + { K}_{ d}){ K}_{ a} { Y}_\phi (t) \end{aligned}$$
(64)

This gives us Eq. (16).

Appendix 3: Boundedness

Based on assumption A7, \(\varvec{\theta }_d^*,\,{\varvec{\dot{\theta }}}_d^*,\,{\varvec{\ddot{\theta }}}_d^*\) are bounded. \({ Y}_\psi (t)\) is also bounded as assumed in Theorem 1. Furthermore, \({ M}(\varvec{\theta })\) is bounded since each element contains only constants or cosine functions.

Because \(\dot{V} \le 0,\,V(0) \ge V > 0,\,V\) is bounded, i.e., \(\varvec{s}\) and \(\bar{\varvec{\sigma }}_c\) are bounded. The boundedness \(\varvec{s}\) ensures the boundedness of \({\varvec{\dot{\theta }}}\) and \({\varvec{\dot{\theta }}}_r^*\). The boundedness of \({\varvec{\dot{\theta }}}_r^*\) means that \(\varvec{\theta } \) is bounded (see Eq. (11)). Thus, \({ C}(\varvec{\theta }, {\varvec{\dot{\theta }}})\) is also bounded.

We can ensure the boundedness of \(\dot{\varvec{s}}\) because of Eq. (23) and the nonsingularity of \({M}(\varvec{\theta })\).

Because we can obtain the boundedness of \(\varvec{s}\) and \(\dot{\varvec{s}},\,\ddot{V}\) given by (29) becomes bounded.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, S., Darainy, M., Sasaki, M. et al. Computational model of motor learning and perceptual change. Biol Cybern 107, 653–667 (2013). https://doi.org/10.1007/s00422-013-0565-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-013-0565-3

Keywords

Navigation