Skip to main content
Log in

Network model of chemical-sensing system inspired by mouse taste buds

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Taste buds endure extreme changes in temperature, pH, osmolarity, so on. Even though taste bud cells are replaced in a short span, they contribute to consistent taste reception. Each taste bud consists of about 50 cells whose networks are assumed to process taste information, at least preliminarily. In this article, we describe a neural network model inspired by the taste bud cells of mice. It consists of two layers. In the first layer, the chemical stimulus is transduced into an irregular spike train. The synchronization of the output impulses is induced by the irregular spike train at the second layer. These results show that the intensity of the chemical stimulus is encoded as the degree of the synchronization of output impulses. The present algorithms for signal processing result in a robust chemical-sensing system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles M (1991) Corticonics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Beidler LM (1970) Physiological properties of mammalian taste receptors. In: Wolstenholme GEW, Knight J (eds) Taste and smell in vertebrates. Churchill, London, pp 51–67

    Google Scholar 

  • Braun HA, Wissing H, Schäfer K, Hirsch MC (1994) Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature 367: 270–273

    Article  PubMed  CAS  Google Scholar 

  • Dando R, Roper SD (2009) Cell-to-cell communication in intact taste buds through ATP signalling from pannexin 1 gap junction hemichannels. J Physiol 587(24): 5899–5906

    Article  PubMed  CAS  Google Scholar 

  • Douglass JK, Wilkens L, Pantazelou E, Moss F (1993) Noise enhancement of information transfer in crayfish mechnoreceptors by stochastic resonance. Nature 365: 337–340

    Article  PubMed  CAS  Google Scholar 

  • Farbman AI (1980) Renewal of taste bud cells in rat circumvallate papillae. Cell Tissue Kinet 13: 349–357

    PubMed  CAS  Google Scholar 

  • Freund JA, Schimansky-Geier L, Beisner B, Neiman A, Russell DF, Yakusheva T, Moss F (2002) Behavioral stochastic resonance: how the noise from a daphnia swarm enhances individual prey capture by juvenile paddlefish. J Theor Biol 214: 71–83

    Article  PubMed  Google Scholar 

  • Galán RF, Ermentrout GB, Urban NN (2006) Reliability, discriminability and stochastic synchronization of olfactory neurons. Sens Actuators B 116: 168–173

    Article  Google Scholar 

  • Huang YJ, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD (2007) The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci USA 104(15): 6436–6441

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich EM (2007) Dynamical systems in neuroscience. MIT Press, Cambridge

    Google Scholar 

  • Kataoka S, Toyono T, Seta Y, Ogura T, Toyoshima K (2004) Expression of P2Y1 receptors in rat taste buds. Histochem Cell Biol 121: 419–426

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Ohtubo Y, Kumazawa T, Yoshii K (2007) Electrophysiological identification of mouse taste bud cells. Int Congr Ser 1301: 254–257

    Article  Google Scholar 

  • Levin JE, Miller JP (1996) Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance. Nature 380: 165–168

    Article  PubMed  CAS  Google Scholar 

  • Lindemann B (1996) Taste reception. Physiol Rev 76: 719–766

    CAS  Google Scholar 

  • Moss F, Pierson D, O’Gorman D (1994) Stochastic resonance: tutorial and update. Int J Bifurc Chaos 4: 1383–1397

    Article  Google Scholar 

  • Nagai K, Nakao H (2009) Experimental synchronization of circuit oscillations induced by common telegraph noise. Phys Rev E 79: 036205

    Article  Google Scholar 

  • Nagai K, Nakao H, Tsubo Y (2005) Synchrony of neural oscillators induced by random telegraphic currents. Phys Rev E 71: 036217

    Article  Google Scholar 

  • Neiman AB, Russell DF (2002) Synchronization of noise-induced bursts in noncoupled sensory neurons. Phys Rev Lett 88(13): 138103

    Article  PubMed  Google Scholar 

  • Noguchi T, Ikeda Y, Miyajima M, Yoshii K (2003) Voltage-gated channels involved in taste responses and characterizing taste bud cells in mouse soft palates. Brain Res 982: 241–259

    Article  PubMed  CAS  Google Scholar 

  • Ohtubo Y (2007) Quantitative study on cell types in adult mouse taste buds. Int Congr Ser 1301: 250–253

    Article  Google Scholar 

  • Ohtubo Y (2009) Voltage-gated sodium currents of cell types in mouse taste bud cells. In: Abstract of The 7th international symposium on molecular and neural mechanisms of taste and olfactory perception, p 28

  • Ohtubo Y, Yoshii K (2011) Quantitative analysis of taste bud cell numbers in fungiform and soft palate taste buds of mice. Brain Res 1367: 13–21

    Article  PubMed  CAS  Google Scholar 

  • Ohtubo Y, Suemitsu T, Shiobara S, Matsumoto T, Kumazawa T, Yoshii K (2001) Optical recordings of taste responses from fungiform papillae of mouse in situ. J Physiol 530: 287–293

    Article  PubMed  CAS  Google Scholar 

  • Ohtubo Y, Hashiba Y, Kimura K, Kumazawa T, Yoshii K (2008) Voltage-gated Na+ currents of each cell type in mouse taste bud. In: Abstract of 18th congress of the European chemoreception research organization, p 83

  • Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Romanov RA, Rogachevskaja OA, Khokhlov AA, Kolesnikov SS (2008) Voltage dependence of ATP secretion in mammalian taste cells. J Gen Physiol 132(6): 731–744

    Article  PubMed  CAS  Google Scholar 

  • Seta Y, Toyoshima K (1995) Three-dimensional structure of the gustatory cell in the mouse fungiform taste buds: a computer-assisted reconstruction from serial ultrathin sections. Anat Embryol 191: 83–88

    Article  PubMed  CAS  Google Scholar 

  • Wilkens LA, Douglass JK (1994) A stimulus paradigm for analysis of near-field hydrodynamic sensitivity in crustaceans. J Exp Biol 189: 263–272

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsumi Tateno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tateno, K., Igarashi, J., Ohtubo, Y. et al. Network model of chemical-sensing system inspired by mouse taste buds. Biol Cybern 105, 21–27 (2011). https://doi.org/10.1007/s00422-011-0447-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-011-0447-5

Keywords

Navigation