Skip to main content
Log in

Animal navigation: the difficulty of moving in a straight line

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In principle, there are two strategies for navigating a straight course. One is to use an external directional reference and continually reorienting with reference to it, while the other is to infer body rotations from internal sensory information only. We show here that, while the first strategy will enable an animal or mobile agent to move arbitrarily far away from its starting point, the second strategy will not do so, even after an infinite number of steps. Thus, an external directional reference—some form of compass—is indispensable for ensuring progress away from home. This limitation must place significant constraints on the evolution of biological navigation systems. Some specific examples are discussed. An important corollary arising from the analysis of compassless navigation is that the maximum expected displacement represents a robust measure of the straightness of a path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Batschelet E (1981) Circular statistics in biology. Academic, London

    Google Scholar 

  • Benhamou S, Sauvé J-P, Bovet P (1990) Spatial memory in large scale movements: efficiency and limitation of the egocentric coding process. J Theor Biol 145:1–12

    Article  Google Scholar 

  • Bovet P, Benhamou S (1988) Spatial analysis of animals’ movements using a correlated random walk model. J Theor Biol 131:419–433

    Article  Google Scholar 

  • Byers J (2001) Correlated random walk equations of animal dispersal resolved by simulation. Ecology 82(6):1680–1690

    Article  Google Scholar 

  • Capaldi EA, Smith AD, Osborne JL, Fahrbach SE, Farris SM, Reynolds DR, Edwards AS, Martin A, Robinson GE, Poppy GM, Riley JR (2000) Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403(6769):537–540

    Article  PubMed  CAS  Google Scholar 

  • Chittka L, Williams NM, Rasmussen H, Thomson JD (1999) Navigation without vision: Bumblebee orientation in complete darkness. Proc R Soc Lond B 266:45–50

    Article  Google Scholar 

  • Collett TS, Rees JA (1997) View-based navigation in hymenoptera: multiple strategies of landmark guidance in the approach to a feeder. J Comp Physiol A 181:47–58

    Article  Google Scholar 

  • Dacke M, Nilsson D-E, Scholtz C, Byrne M, Warrant EJ (2003) Animal behaviour: Insect orientation to polarized moonlight. Nature 424:33

    Article  PubMed  CAS  Google Scholar 

  • Etienne AS, Maurer R, Berlie J, Reverdin B, Rowe T, Georgakopoulos J, Séguinot V (1998) Navigation through vector addition. Nature 396:161–164

    Article  PubMed  CAS  Google Scholar 

  • Etienne AS, Maurer R, Séguinot V (1996) Path integration in mammals and its interaction with visual landmarks. J Exp Biol 199:201-209

    PubMed  CAS  Google Scholar 

  • Gallistel CR (1990) The Organisation of Learning. MIT Press, Cambridge

    Google Scholar 

  • Görner P, Claas B (1985) Homing behavior and orientation in the funnel-web spider, Agelena labyrinthica. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin, pp 275–297

    Google Scholar 

  • Hartmann G, Wehner R (1995) The ant’s path integration system: a neural architecture. Biol Cybern 73:483–497

    Google Scholar 

  • Ingemar JC (1991) Blanche—an experiment in guidance and navigation of an autonomous robot vehicle. IEEE Trans Robot Autom 7:193–204

    Article  Google Scholar 

  • Kareiva PM, Shigesada N (1983) Analyzing insect movement as a correlated random walk. Oecologia 56:234–238

    Article  Google Scholar 

  • McCulloch CE, Cain ML (1989) Analyzing discrete movement data as a correlated random walk. Ecology 70(2):383–388

    Article  Google Scholar 

  • Mantegna RN, Stanley HE (1994) Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight. Phys Rev Lett 73:2946–2949

    Article  PubMed  CAS  Google Scholar 

  • Mardia KV (1972) Statistics of directional data. Academic, London

    Google Scholar 

  • Mittelstaedt H, Mittelstaedt ML (1982) Homing by path integration. In: Papi F, Wallraff HG (eds) Avian navigation. Springer, Berlin, pp 290–297

    Google Scholar 

  • Nahapetian B (1991) Limit theorems and some applications in statistical physics. Teubner, Leipzig, pp 22–23

    Google Scholar 

  • Nossal R, Weiss G (1974) A descriptive theory of cell migration on surfaces. J Theor Biol 47:103–113

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27:832–835

    Google Scholar 

  • Seyfarth EA, Hergenröder R, Ebbes H, Barth FG (1982) Idiothetic orientation of a wandering spider: compensation of detours and estimates of goal distance. Behav Ecol Sociobiol 11:139–148

    Article  Google Scholar 

  • Shlesinger MF (1995) Comment on “Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight”. Phys Rev Lett 74:4959

    Article  PubMed  CAS  Google Scholar 

  • Thrun S (1997) To know or not to know: on the utility of models in mobile robots. AI Mag 18:47–54

    Google Scholar 

  • Viswanathan GM, Buldyrev SV, Havlin S, da Luz MGE, Raposo EP, Stanley HE (1999) Optimizing the success of random searches. Nature 401:911–914

    Article  PubMed  CAS  Google Scholar 

  • Wehner R (1987) Spatial organization of foraging behavior in individually searching desert ants, Cataglyphis (Sahara Desert) and Ocymyrmex (Namib Desert). Behav Soc Insects (Experientia Supplementum) 54:15–42

    Google Scholar 

  • Wehner R (1992) Arthropods. In: Papi F (ed) Animal homing. Chapman and Hall, London, pp 45–144

    Google Scholar 

  • Wehner R (1994) The polarization-vision project: championing organismic biology. Fortschritte der Zoologie 39:103–143

    Google Scholar 

  • Wiltschko W, Wiltschko R (2005) Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A 191(8):675–693

    Article  Google Scholar 

  • Wittmann T, Schwegler H (1995) Path integration—a network model. Biol Cybern 73:569–575

    Article  Google Scholar 

  • Wolf H and Wehner R (2005) Desert ants compensate for navigation uncertainty. J Exp Biol 208:4223–4230

    Article  PubMed  Google Scholar 

  • Zollikofer CPE (1994) Stepping patterns in ants. II. Influence of body morphology. J Exp Biol 192:107–118

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen Cheung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, A., Zhang, S., Stricker, C. et al. Animal navigation: the difficulty of moving in a straight line. Biol Cybern 97, 47–61 (2007). https://doi.org/10.1007/s00422-007-0158-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0158-0

Keywords

Navigation