Skip to main content
Log in

Potentiation of the NO-cGMP pathway and blood flow responses during dynamic exercise in healthy humans

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Previous work has shown nitric oxide (NO) contributes to ~15% of the hyperemic response to dynamic exercise in healthy humans. This NO-mediated vasodilation occurs, in part, via increases in intracellular cyclic guanosine monophosphate (cGMP), which is catabolized by phosphodiesterase. We sought to examine the effect of phosphodiesterase-5 (PDE-5) inhibition on forearm blood flow (FBF) responses to dynamic handgrip exercise in healthy humans and the role of NO. We hypothesized exercise hyperemia would be augmented by sildenafil citrate (SDF, PDE-5 inhibitor). We further hypothesized any effect of SDF on exercise hyperemia would be abolished with intra-arterial infusion of the NO synthase (NOS) inhibitor L-NG-monomethyl arginine (L-NMMA).

Methods

FBF (Doppler ultrasound) was assessed at rest and during 5 min of dynamic forearm handgrip exercise at 15% of maximal voluntary contraction under control (saline) conditions and during 3 experimental protocols: (1) oral SDF (n = 10), (2) intra-arterial L-NMMA (n = 20), (3) SDF and L-NMMA (n = 10). FBF responses to intra-arterial sodium nitroprusside (NTP, NO donor) were also assessed.

Results

FBF increased with exercise (p < 0.01). Intra-arterial infusion of L-NMMA resulted in a reduction in exercise hyperemia (17 ± 1 to 15 ± 1 mL/dL/min, p < 0.01). Although the hyperemic response to NTP was augmented by SDF (area under the curve: 41 ± 7 vs 61 ± 11 AU, p < 0.01), there was no effect of SDF on exercise hyperemia (p = 0.33).

Conclusions

Despite improving NTP-mediated vasodilation, oral SDF failed to augment exercise hyperemia in young, healthy adults. These observations reflect a minor contribution of NO and the cGMP pathway during exercise hyperemia in healthy young humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACH:

Acetylcholine

ANOVA:

Analysis of variance

ATP:

Adenosine triphosphate

AU:

Arbitrary units

AUC:

Area under the curve

BMI:

Body mass index

cGMP:

Cyclic guanosine monophosphate

eNOS:

Endothelial nitric oxide synthase

FBF:

Forearm blood flow

FVC:

Forearm vascular conductance

L-NMMA:

L-NG-monomethyl arginine

MSNA:

Muscle sympathetic nerve activity

MVC:

Maximal voluntary contraction

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NTP:

Sodium nitroprusside

PDE-5:

Phosphodiesterase-5

SDF:

Sildenafil citrate

References

  • Attina TM, Malatino LS, Maxwell SR, Padfield PL, Webb DJ (2008) Phosphodiesterase type 5 inhibition reverses impaired forearm exercise-induced vasodilatation in hypertensive patients. J Hypertens 26:501–507

    Article  CAS  PubMed  Google Scholar 

  • Blaise S, Hellmann M, Roustit M, Isnard S, Cracowski JL (2010) Oral sildenafil increases skin hyperaemia induced by iontophoresis of sodium nitroprusside in healthy volunteers. Br J Pharmacol 160:1128–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley SJ, Kingwell BA, McConell GK (1999) Nitric oxide synthase inhibition reduces leg glucose uptake but not blood flow during dynamic exercise in humans. Diabetes 48:1815–1821

    Article  CAS  PubMed  Google Scholar 

  • Casey DP, Curry TB, Wilkins BW, Joyner MJ (2011) Nitric oxide-mediated vasodilation becomes independent of beta-adrenergic receptor activation with increased intensity of hypoxic exercise. J Appl Physiol 110:687–694

    Article  CAS  PubMed  Google Scholar 

  • Casey DP, Treichler DP, Ganger CTT, Schneider AC, Ueda K (2015) Acute dietary nitrate supplementation enhances compensatory vasodilation during hypoxic exercise in older adults. J Appl Physiol 118:178–186

    Article  PubMed  Google Scholar 

  • Dinenno FA, Joyner MJ (2003) Blunted sympathetic vasoconstriction in contracting skeletal muscle of healthy humans: is nitric oxide obligatory? J Physiol 553:281–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinenno FA, Joyner MJ (2004) Combined NO and PG inhibition augments alpha-adrenergic vasoconstriction in contracting human skeletal muscle. Am J Physiol Heart Circ Physiol 287:22

    Article  Google Scholar 

  • Dishy V, Sofowora G, Harris PA, Kandcer M, Zhan F, Wood AJ, Stein CM (2001) The effect of sildenafil on nitric oxide-mediated vasodilation in healthy men. Clin Pharmacol Ther 70:270–279

    Article  CAS  PubMed  Google Scholar 

  • Dishy V, Harris PA, Pierce R, Prasad HC, Sofowora G, Bonar HL, Wood AJ, Stein CM (2004) Sildenafil does not improve nitric oxide-mediated endothelium-dependent vascular responses in smokers. Br J Clin Pharmacol 57:209–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dopp JM, Agapitov AV, Sinkey CA, Haynes WG, Phillips BG (2013) Sildenafil increases sympathetically mediated vascular tone in humans. Am J Hypertens 26:762–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy SJ, New G, Tran BT, Harper RW, Meredith IT (1999) Relative contribution of vasodilator prostanoids and NO to metabolic vasodilation in the human forearm. Am J Physiol 276:H663–H670

    CAS  PubMed  Google Scholar 

  • Dyke CK, Proctor DN, Dietz NM, Joyner MJ (1995) Role of nitric oxide in exercise hyperaemia during prolonged rhythmic handgripping in humans. J Physiol 488:259–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo T, Imaizumi T, Tagawa T, Shiramoto M, Ando S, Takeshita A (1994) Role of nitric oxide in exercise-induced vasodilation of the forearm. Circulation 90:2886–2890

    Article  CAS  PubMed  Google Scholar 

  • Ferguson SK, Hirai DM, Copp SW, Holdsworth CT, Allen JD, Jones AM, Musch TI, Poole DC (2013) Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats. J Physiol 591:547–557

    Article  CAS  PubMed  Google Scholar 

  • Frandsenn U, Bangsbo J, Sander M, Hoffner L, Betak A, Saltin B, Hellsten Y (2001) Exercise-induced hyperaemia and leg oxygen uptake are not altered during effective inhibition of nitric oxide synthase with N(G)-nitro-l-arginine methyl ester in humans. J Physiol 531:257–264

    Article  CAS  PubMed  Google Scholar 

  • Ghofrani HA, Osterloh IH, Grimminger F (2006) Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat Rev Drug Discov 5:689–702

    Article  CAS  PubMed  Google Scholar 

  • Gilligan DM, Panza JA, Kilcoyne CM, Waclawiw MA, Casino PR, Quyyumi AA (1994) Contribution of endothelium-derived nitric oxide to exercise-induced vasodilation. Circulation 90:2853–2858

    Article  CAS  PubMed  Google Scholar 

  • Gordon MB, Jain R, Beckman JA, Creager MA (2002) The contribution of nitric oxide to exercise hyperemia in the human forearm. Vasc Med 7:163–168

    Article  PubMed  Google Scholar 

  • Green DJ, Bilsborough W, Naylor LH, Reed C, Wright J, O’Driscoll G, Walsh JH (2005) Comparison of forearm blood flow responses to incremental handgrip and cycle ergometer exercise: relative contribution of nitric oxide. J Physiol 562:617–628

    Article  CAS  PubMed  Google Scholar 

  • Halcox JP, Nour KR, Zalos G, Mincemoyer RA, Waclawiw M, Rivera CE, Willie G, Ellahham S, Quyyumi AA (2002) The effect of sildenafil on human vascular function, platelet activation, and myocardial ischemia. J Am Coll Cardiol 40:1232–1240

    Article  CAS  PubMed  Google Scholar 

  • Harrell JW, Johansson RE, Evans TD, Sebranek JJ, Walker BJ, Eldridge MW, Serlin RC, Schrage WG (2015) Preserved microvascular endothelial function in young, obese adults with functional loss of nitric oxide signaling. Front Physiol 6:387. doi:10.3389/fphys.2015.00387

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinonen I, Saltin B, Kemppainen J, Sipila HT, Oikonen V, Nuutila P, Knuuti J, Kalliokoski K, Hellsten Y (2011) Skeletal muscle blood flow and oxygen uptake at rest and during exercise in humans: a pet study with nitric oxide and cyclooxygenase inhibition. Am J Physiol Heart Circ Physiol 300:21

    Google Scholar 

  • Herr MD, Hogeman CS, Koch DW, Krishnan A, Momen A, Leuenberger UA (2010) A real-time device for converting Doppler ultrasound audio signals into fluid flow velocity. Am J Physiol Heart Circ Physiol 298:19

    Article  Google Scholar 

  • Hryniewicz K, Dimayuga C, Hudaihed A, Androne AS, Zheng H, Jankowski K, Katz SD (2005) Inhibition of angiotensin-converting enzyme and phosphodiesterase type 5 improves endothelial function in heart failure. Clin Sci 108:331–338

    Article  CAS  PubMed  Google Scholar 

  • Hsu AR, Barnholt KE, Grundmann NK, Lin JH, McCallum SW, Friedlander AL (2006) Sildenafil improves cardiac output and exercise performance during acute hypoxia, but not normoxia. J Appl Physiol 100:2031–2040

    Article  CAS  PubMed  Google Scholar 

  • Jackson G, Benjamin N, Jackson N, Allen MJ (1999) Effects of sildenafil citrate on human hemodynamics. Am J Cardiol 83:13C–20C

    Article  CAS  PubMed  Google Scholar 

  • Joyner MJ, Casey DP (2015) Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev 95:549–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joyner MJ, Dietz NM (1997) Nitric oxide and vasodilation in human limbs. J Appl Physiol 83:1785–1796

    CAS  PubMed  Google Scholar 

  • Katz SD, Krum H, Khan T, Knecht M (1996) Exercise-induced vasodilation in forearm circulation of normal subjects and patients with congestive heart failure: role of endothelium-derived nitric oxide. J Am Coll Cardiol 28:585–590

    Article  CAS  PubMed  Google Scholar 

  • Kellawan JM, Johansson RE, Harrell JW, Sebranek JJ, Walker BJ, Eldridge MW, Schrage WG (2015) Exercise vasodilation is greater in women: contributions of nitric oxide synthase and cyclooxygenase. Eur J Appl Physiol 115:1735–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M, Higashi Y, Hara K, Noma K, Sasaki S, Nakagawa K, Goto C, Oshima T, Yoshizumi M, Chayama K (2003) PDE5 inhibitor sildenafil citrate augments endothelium-dependent vasodilation in smokers. Hypertension 41:1106–1110

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Stebbins CL, Jung E, Nho H, Kim JK, Chang MJ, Choi HM (2015) Effects of chronic dietary nitrate supplementation on the hemodynamic response to dynamic exercise. Am J Physiol Regul Integr Comp Physiol 309:R459–R466

    Article  CAS  PubMed  Google Scholar 

  • Maiorana A, O’Driscoll G, Taylor R, Green D (2003) Exercise and the nitric oxide vasodilator system. Sports Med 33:1013–1035

    Article  PubMed  Google Scholar 

  • Martin EA, Nicholson WT, Eisenach JH, Charkoudian N, Joyner MJ (2006) Bimodal distribution of vasodilator responsiveness to adenosine due to difference in nitric oxide contribution: implications for exercise hyperemia. J Appl Physiol 101:492–499

    Article  CAS  PubMed  Google Scholar 

  • Maxwell AJ, Schauble E, Bernstein D, Cooke JP (1998) Limb blood flow during exercise is dependent on nitric oxide. Circulation 98:369–374

    Article  CAS  PubMed  Google Scholar 

  • Mayer BX, Mensik C, Krishnaswami S, Derendorf H, Eichler HG, Schmetterer L, Wolzt M (1999) Pharmacokinetic-pharmacodynamic profile of systemic nitric oxide-synthase inhibition with L-NMMA in humans. Br J Clin Pharmacol 47:539–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreland RB, Goldstein I, Traish A (1998) Sildenafil, a novel inhibitor of phosphodiesterase type 5 in human corpus cavernosum smooth muscle cells. Life Sci 62:309–318

    Article  Google Scholar 

  • Nichols DJ, Muirhead GJ, Harness JA (2002) Pharmacokinetics of sildenafil after single oral doses in healthy male subjects: absolute bioavailability, food effects and dose proportionality. Br J Clin Pharmacol 53(Suppl 1):5S–12S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips BG, Kato M, Pesek CA, Winnicki M, Narkiewicz K, Davison D, Somers VK (2000) Sympathetic activation by sildenafil. Circulation 102:3068–3073

    Article  CAS  PubMed  Google Scholar 

  • Radegran G, Saltin B (1999) Nitric oxide in the regulation of vasomotor tone in human skeletal muscle. Am J Physiol 276:H1951–H1960

    CAS  PubMed  Google Scholar 

  • Robinson SD, Ludlam CA, Boon NA, Newby DE (2006) Phosphodiesterase type 5 inhibition does not reverse endothelial dysfunction in patients with coronary heart disease. Heart 92:170–176

    Article  CAS  PubMed  Google Scholar 

  • Saltin B, Radegran G, Koskolou MD, Roach RC (1998) Skeletal muscle blood flow in humans and its regulation during exercise. Acta Physiol Scand 162:421–436

    Article  CAS  PubMed  Google Scholar 

  • Schalcher C, Schad K, Brunner-La Rocca HP, Schindler R, Oechslin E, Scharf C, Suetsch G, Bertel O, Kiowski W (2002) Interaction of sildenafil with cAMP-mediated vasodilation in vivo. Hypertension 40:763–767

    Article  CAS  PubMed  Google Scholar 

  • Schofield RS, Edwards DG, Schuler BT, Estrada J, Aranda JM, Pauly DF, Hill JA, Aggarwal R, Nichols WW (2003) Vascular effects of sildenafil in hypertensive cardiac transplant recipients. Am J Hypertens 16:874–877

    Article  CAS  PubMed  Google Scholar 

  • Schrage WG, Joyner MJ, Dinenno FA (2004) Local inhibition of nitric oxide and prostaglandins independently reduces forearm exercise hyperaemia in humans. J Physiol 557:599–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd J (1983) Circulation to skeletal muscle. In: Abboud JSAF (ed) Handbook of physiology: the cardiovascular system peripheral circulation and blood flow. American Physiological Society, Bethesda, pp 319–370

    Google Scholar 

  • Shepherd JR, Joyner MJ, Dinenno FA, Curry TB, Ranadive SM (2016) Prolonged adenosine triphosphate infusion and exercise hyperemia in humans. J Appl Physiol 121:629–635

    Article  PubMed  Google Scholar 

  • Shoemaker JK, Halliwill JR, Hughson RL, Joyner MJ (1997) Contributions of acetylcholine and nitric oxide to forearm blood flow at exercise onset and recovery. Am J Physiol 273:H2388–H2395

    CAS  PubMed  Google Scholar 

  • Singh TP, Rohit M, Grover A, Malhotra S, Vijayvergiya R (2006) A randomized, placebo-controlled, double-blind, crossover study to evaluate the efficacy of oral sildenafil therapy in severe pulmonary artery hypertension. Am Heart J 151:e1–e5

    Article  Google Scholar 

  • Tschakovsky ME, Sujirattanawimol K, Ruble SB, Valic Z, Joyner MJ (2002) Is sympathetic neural vasoconstriction blunted in the vascular bed of exercising human muscle? J Physiol 541:623–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlachopoulos C, Tsekoura D, Alexopoulos N, Panagiotakos D, Aznaouridis K, Stefanadis C (2004) Type 5 phosphodiesterase inhibition by sildenafil abrogates acute smoking-induced endothelial dysfunction. Am J Hypertens 17:1040–1044

    Article  CAS  PubMed  Google Scholar 

  • Wilkins BW, Pike TL, Martin EA, Curry TB, Ceridon ML, Joyner MJ (2008) Exercise intensity-dependent contribution of beta-adrenergic receptor-mediated vasodilatation in hypoxic humans. J Physiol 586:1195–1205

    Article  CAS  PubMed  Google Scholar 

  • Wilson JR, Kapoor S (1993) Contribution of endothelium-derived relaxing factor to exercise-induced vasodilation in humans. J Appl Physiol 75:2740–2744

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Many thanks to our research participants. Technical and other support was provided by Madhuri Somaraju, Christopher Johnson, Karen Krucker, Brandon Madery, Shelly Roberts, Branton Walker, and Brian Welch (Mayo Clinic), and Meghan Crain, Josh Sebranek, Marlowe Eldridge, Brad Walker, John Harrell, Rebecca Johansson, and Garrett Peltonen (University of Wisconsin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy B. Curry.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments.

Funding

Financial support was provided by the National Institutes of Health (NIH) HL46493 (MJJ), HL078019 (MJJ), HL105820 (WGS), RR17520 (TBC), UL1 TR000135 from the National Center for Advancing Translational Sciences (NCATS), as well as the Mayo Clinic Department of Anesthesiology.

Conflict of interest

The authors declare no relevant conflicts of interest.

Additional information

Communicated by David C. Poole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limberg, J.K., Malterer, K.R., Mikhail Kellawan, J. et al. Potentiation of the NO-cGMP pathway and blood flow responses during dynamic exercise in healthy humans. Eur J Appl Physiol 117, 237–246 (2017). https://doi.org/10.1007/s00421-016-3523-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3523-7

Keywords

Navigation