Skip to main content

Advertisement

Log in

Fitness level impacts salivary antimicrobial protein responses to a single bout of cycling exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Salivary antimicrobial proteins (sAMPs) protect the upper respiratory tract (URTI) from invading microorganisms and have been linked with URTI infection risk in athletes. While high training volume is associated with increased URTI risk, it is not known if fitness affects the sAMP response to acute exercise. This study compared the sAMP responses to various exercising workloads of highly fit experienced cyclists with those who were less fit.

Methods

Seventeen experienced cyclists (nine highly fit; eight less fit) completed three 30-min exercise trials at workloads corresponding to −5, +5 and +15 % of the individual blood lactate threshold. Saliva samples were collected pre- and post-exercise to determine the concentration and secretion of α-amylase, human neutrophil proteins 1–3 (HNP1–3) lactoferrin, LL-37, lysozyme, and salivary SIgA.

Results

The concentration and/or secretion of all sAMPs increased post-exercise, but only α-amylase was sensitive to exercise workload. Highly fit cyclists had lower baseline concentrations of α-amylase, HNP1–3, and lactoferrin, although secretion rates did not differ between the groups. Highly fit cyclists did, however, exhibit greater post-exercise increases in the concentration and/or secretion of a majority of measured sAMPs (percentage difference between highly fit and less fit in parentheses), including α-amylase concentration (+107 %) and secretion (+148 %), HNP1–3 concentration (+97 %) and secretion (+158 %), salivary SIgA concentration (+181 %), lactoferrin secretion (+209 %) and LL-37 secretion (+138 %).

Conclusion

We show for the first time that fitness level is a major determinant of exercise-induced changes in sAMPs. This might be due to training-induced alterations in parasympathetic and sympathetic nervous system activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

sAMP:

Salivary antimicrobial protein

URTI:

Upper respiratory tract infection

SIgA:

Secretory Immunoglobulin A

HNP:

Human neutrophil peptide

BLT:

Blood lactate threshold

RPM:

Revolutions per minute

RPE:

Rating of perceived exertion

ANOVA:

Analysis of variance

References

  • Allgrove JE, Gomes E, Hough J, Gleeson M (2008) Effects of exercise intensity on salivary antimicrobial proteins and markers of stress in active men. J Sports Sci 26(6):653–661. doi:10.1080/02640410701716790

    Article  PubMed  Google Scholar 

  • Bals R, Hiemstra PS (2004) Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur Respir J 23(2):327–333

    Article  CAS  PubMed  Google Scholar 

  • Bartlett JA, Fischer AJ, McCray PB Jr (2008) Innate immune functions of the airway epithelium. Contrib Microbiol 15:147–163. doi:10.1159/000136349

    Article  CAS  PubMed  Google Scholar 

  • Bishop NC, Gleeson M (2009) Acute and chronic effects of exercise on markers of mucosal immunity. Front Biosci (Landmark Ed) 14:4444–4456

    Article  CAS  Google Scholar 

  • Borg GA (1973) Perceived exertion: a note on “history” and methods. Med Sci Sports 5(2):90–93

    CAS  PubMed  Google Scholar 

  • Bourdon P (2013) In: Tanner RK, Gore CJ (eds) Physiological tests for elite athletes, 2nd edn. Human Kinetics, Champaign, pp 77–102

    Google Scholar 

  • Bowdish DM, Davidson DJ, Hancock RE (2005) A re-evaluation of the role of host defence peptides in mammalian immunity. Curr Protein Pept Sci 6(1):35–51

    Article  CAS  PubMed  Google Scholar 

  • Calvo F, Chicharro JL, Bandres F, Lucia A, Perez M, Alvarez J, Mojares LL, Vaquero AF, Legido JC (1997) Anaerobic threshold determination with analysis of salivary amylase. Can J Appl Physiol 22(6):553–561

    Article  CAS  PubMed  Google Scholar 

  • Chatterton RT Jr, Vogelsong KM, Lu YC, Ellman AB, Hudgens GA (1996) Salivary alpha-amylase as a measure of endogenous adrenergic activity. Clin Physiol 16(4):433–448

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Niyonsaba F, Ushio H, Okuda D, Nagaoka I, Ikeda S, Okumura K, Ogawa H (2005) Synergistic effect of antibacterial agents human beta-defensins, cathelicidin LL-37 and lysozyme against Staphylococcus aureus and Escherichia coli. J Dermatol Sci 40(2):123–132. doi:10.1016/j.jdermsci.2005.03.014

    Article  CAS  PubMed  Google Scholar 

  • Chicharro JL, Lucia A, Perez M, Vaquero AF, Urena R (1998) Saliva composition and exercise. Sports Med 26(1):17–27

    Article  CAS  PubMed  Google Scholar 

  • Coote JH (2010) Recovery of heart rate following intense dynamic exercise. Exp Physiol 95(3):431–440. doi:10.1113/expphysiol.2009.047548

    Article  PubMed  Google Scholar 

  • Dale BA, Tao R, Kimball JR, Jurevic RJ (2006) Oral antimicrobial peptides and biological control of caries. BMC Oral Health 6(Suppl 1):S13. doi:10.1186/1472-6831-6-S1-S13

    Article  PubMed Central  PubMed  Google Scholar 

  • Davison G, Allgrove J, Gleeson M (2009) Salivary antimicrobial peptides (LL-37 and alpha-defensins HNP1-3), antimicrobial and IgA responses to prolonged exercise. Eur J Appl Physiol 106(2):277–284. doi:10.1007/s00421-009-1020-y

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira VN, Bessa A, Lamounier RP, de Santana MG, de Mello MT, Espindola FS (2010) Changes in the salivary biomarkers induced by an effort test. Int J Sports Med 31(6):377–381. doi:10.1055/s-0030-1248332

    Article  PubMed  Google Scholar 

  • De Smet K, Contreras R (2005) Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 27(18):1337–1347. doi:10.1007/s10529-005-0936-5

    Article  PubMed  Google Scholar 

  • Dorschner RA, Pestonjamasp VK, Tamakuwala S, Ohtake T, Rudisill J, Nizet V, Agerberth B, Gudmundsson GH, Gallo RL (2001) Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J Invest Dermatol 117(1):91–97. doi:10.1046/j.1523-1747.2001.01340.x

    Article  CAS  PubMed  Google Scholar 

  • Doss M, White MR, Tecle T, Hartshorn KL (2010) Human defensins and LL-37 in mucosal immunity. J Leukoc Biol 87(1):79–92. doi:10.1189/jlb.0609382

    Article  CAS  PubMed  Google Scholar 

  • Fahlman MM, Engels HJ (2005) Mucosal IgA and URTI in American college football players: a year longitudinal study. Med Sci Sports Exerc 37(3):374–380

    Article  CAS  PubMed  Google Scholar 

  • Fahlman MM, Engels HJ, Morgan AL, Kolokouri I (2001) Mucosal IgA response to repeated wingate tests in females. Int J Sports Med 22(2):127–131

    Article  CAS  PubMed  Google Scholar 

  • Fortes MB, Diment BC, Di Felice U, Walsh NP (2012) Dehydration decreases saliva antimicrobial proteins important for mucosal immunity. Appl Physiol Nutr Metab 37(5):850–859. doi:10.1139/h2012-054

    Article  CAS  PubMed  Google Scholar 

  • Gellish RL, Goslin BR, Olson RE, McDonald A, Russi GD, Moudgil VK (2007) Longitudinal modeling of the relationship between age and maximal heart rate. Med Sci Sports Exerc 39(5):822–829. doi:10.1097/mss.0b013e31803349c6

    Article  PubMed  Google Scholar 

  • Gillum T, Kuennen M, Miller T, Riley L (2014) The effects of exercise, sex, and menstrual phase on salivary antimicrobial proteins. Exerc Immunol Rev 20:23–38

    PubMed  Google Scholar 

  • Gleeson M (2000) Mucosal immunity and respiratory illness in elite athletes. Int J Sports Med 21(Suppl 1):S33–S43

    Article  CAS  PubMed  Google Scholar 

  • Gleeson M, Pyne DB (2000) Special feature for the Olympics: effects of exercise on the immune system: exercise effects on mucosal immunity. Immunol Cell Biol 78(5):536–544. doi:10.1111/j.1440-1711.2000.t01-8-.x

    Article  CAS  PubMed  Google Scholar 

  • Gleeson M, McDonald WA, Pyne DB, Cripps AW, Francis JL, Fricker PA, Clancy RL (1999) Salivary IgA levels and infection risk in elite swimmers. Med Sci Sports Exerc 31(1):67–73

    Article  CAS  PubMed  Google Scholar 

  • Gleeson M, Bishop N, Oliveira M, McCauley T, Tauler P, Muhamad AS (2012) Respiratory infection risk in athletes: association with antigen-stimulated IL-10 production and salivary IgA secretion. Scand J Med Sci Sports 22(3):410–417. doi:10.1111/j.1600-0838.2010.01272.x

    Article  CAS  PubMed  Google Scholar 

  • Hanson LA, Ahlstedt S, Andersson B, Carlsson B, Cole MF, Cruz JR, Dahlgren U, Ericsson TH, Jalil F, Khan SR, Mellander L, Schneerson R, Eden CS, Soderstrom T, Wadsworth C (1983) Mucosal immunity. Ann NY Acad Sci 409:1–21

    Article  CAS  PubMed  Google Scholar 

  • Laube DM, Yim S, Ryan LK, Kisich KO, Diamond G (2006) Antimicrobial peptides in the airway. Curr Top Microbiol Immunol 306:153–182

    CAS  PubMed  Google Scholar 

  • Leicht CA, Bishop NC, Goosey-Tolfrey VL (2011) Mucosal immune responses to treadmill exercise in elite wheelchair athletes. Med Sci Sports Exerc 43(8):1414–1421. doi:10.1249/MSS.0b013e31820ac959

    Article  CAS  PubMed  Google Scholar 

  • Li TL, Gleeson M (2004) The effect of single and repeated bouts of prolonged cycling and circadian variation on saliva flow rate, immunoglobulin A and alpha-amylase responses. J Sports Sci 22(11–12):1015–1024

    Article  PubMed  Google Scholar 

  • Markkanen H, Syrjanen SM, Alakuijala P (1986) Salivary IgA, lysozyme and beta 2-microglobulin in periodontal disease. Scand J Dent Res 94(2):115–120

    CAS  PubMed  Google Scholar 

  • McCormick TS, Weinberg A (2010) Epithelial cell-derived antimicrobial peptides are multifunctional agents that bridge innate and adaptive immunity. Periodontology 54(1):195–206. doi:10.1111/j.1600-0757.2010.00373.x

    Article  Google Scholar 

  • Nater UM, Rohleder N (2009) Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: current state of research. Psychoneuroendocrinology 34(4):486–496. doi:10.1016/j.psyneuen.2009.01.014

    Article  CAS  PubMed  Google Scholar 

  • Neville V, Gleeson M, Folland JP (2008) Salivary IgA as a risk factor for upper respiratory infections in elite professional athletes. Med Sci Sports Exerc 40(7):1228–1236. doi:10.1249/MSS.0b013e31816be9c3

    Article  CAS  PubMed  Google Scholar 

  • Nieman DC (2000) Is infection risk linked to exercise workload? Med Sci Sports Exerc 32(7 Suppl):S406–S411

    Article  CAS  PubMed  Google Scholar 

  • Nieman DC, Henson DA, Dumke CL, Lind RH, Shooter LR, Gross SJ (2006) Relationship between salivary IgA secretion and upper respiratory tract infection following a 160-km race. J Sports Med Phys Fit 46(1):158–162

    CAS  Google Scholar 

  • Orsi N (2004) The antimicrobial activity of lactoferrin: current status and perspectives. Biometals 17(3):189–196

    Article  CAS  PubMed  Google Scholar 

  • Papacosta E, Nassis GP (2011) Saliva as a tool for monitoring steroid, peptide and immune markers in sport and exercise science. J Sci Med Sport 14(5):424–434. doi:10.1016/j.jsams.2011.03.004

    Article  PubMed  Google Scholar 

  • Purvis D, Gonsalves S, Deuster PA (2010) Physiological and psychological fatigue in extreme conditions: overtraining and elite athletes. PM R 2(5):442–450. doi:10.1016/j.pmrj.2010.03.025

    Article  PubMed  Google Scholar 

  • Putsep K, Carlsson G, Boman HG, Andersson M (2002) Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet 360(9340):1144–1149. doi:10.1016/S0140-6736(02)11201-3

    Article  CAS  PubMed  Google Scholar 

  • Raczak G, Danilowicz-Szymanowicz L, Kobuszewska-Chwirot M, Ratkowski W, Figura-Chmielewska M, Szwoch M (2006) Long-term exercise training improves autonomic nervous system profile in professional runners. Kardiol Pol 64(2):135–140 discussion 141-132

    PubMed  Google Scholar 

  • Radek K, Gallo R (2007) Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol 29(1):27–43

    Article  CAS  PubMed  Google Scholar 

  • Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS (2007) American college of sports medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc 39(2):377–390. doi:10.1249/mss.0b013e31802ca597

    Article  PubMed  Google Scholar 

  • Steerenberg PA, van Asperen IA, van Nieuw Amerongen A, Biewenga A, Mol D, Medema GJ (1997) Salivary levels of immunoglobulin A in triathletes. Eur J Oral Sci 105(4):305–309

    Article  CAS  PubMed  Google Scholar 

  • Tanida T, Okamoto T, Okamoto A, Wang H, Hamada T, Ueta E, Osaki T (2003) Decreased excretion of antimicrobial proteins and peptides in saliva of patients with oral candidiasis. J Oral Pathol Med 32(10):586–594

    Article  CAS  PubMed  Google Scholar 

  • Tao R, Jurevic RJ, Coulton KK, Tsutsui MT, Roberts MC, Kimball JR, Wells N, Berndt J, Dale BA (2005) Salivary antimicrobial peptide expression and dental caries experience in children. Antimicrob Agents Chemother 49(9):3883–3888. doi:10.1128/AAC.49.9.3883-3888.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tenovuo JO (1989) Human saliva : clinical chemistry and microbiology. CRC Press, Boca Raton

    Google Scholar 

  • Tomasi TB, Trudeau FB, Czerwinski D, Erredge S (1982) Immune parameters in athletes before and after strenuous exercise. J Clin Immunol 2(3):173–178

    Article  CAS  PubMed  Google Scholar 

  • Ueta E, Tanida T, Doi S, Osaki T (2000) Regulation of Candida albicans growth and adhesion by saliva. J Lab Clin Med 136(1):66–73. doi:10.1067/mlc.2000.107304

    Article  CAS  PubMed  Google Scholar 

  • Usui T, Yoshikawa T, Orita K, Ueda SY, Katsura Y, Fujimoto S, Yoshimura M (2011) Changes in salivary antimicrobial peptides, immunoglobulin A and cortisol after prolonged strenuous exercise. Eur J Appl Physiol 111(9):2005–2014. doi:10.1007/s00421-011-1830-6

    Article  CAS  PubMed  Google Scholar 

  • Walsh NP, Blannin AK, Clark AM, Cook L, Robson PJ, Gleeson M (1999) The effects of high-intensity intermittent exercise on saliva IgA, total protein and alpha-amylase. J Sports Sci 17(2):129–134. doi:10.1080/026404199366226

    Article  CAS  PubMed  Google Scholar 

  • Weltman A (1995) The blood lactate response to exercise. Human Kinetics, Champaign

    Google Scholar 

  • West NP, Pyne DB, Renshaw G, Cripps AW (2006) Antimicrobial peptides and proteins, exercise and innate mucosal immunity. FEMS Immunol Med Microbiol 48(3):293–304. doi:10.1111/j.1574-695X.2006.00132.x

    Article  CAS  PubMed  Google Scholar 

  • West NP, Pyne DB, Kyd JM, Renshaw GM, Fricker PA, Cripps AW (2010) The effect of exercise on innate mucosal immunity. Br J Sports Med 44(4):227–231. doi:10.1136/bjsm.2008.046532

    Article  CAS  PubMed  Google Scholar 

  • Zouhal H, Jacob C, Delamarche P, Gratas-Delamarche A (2008) Catecholamines and the effects of exercise, training and gender. Sports Med 38(5):401–423

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NASA Grant NNX12AB48G to R.J. Simpson.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Simpson.

Additional information

Communicated by Martin Flueck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunz, H., Bishop, N.C., Spielmann, G. et al. Fitness level impacts salivary antimicrobial protein responses to a single bout of cycling exercise. Eur J Appl Physiol 115, 1015–1027 (2015). https://doi.org/10.1007/s00421-014-3082-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-3082-8

Keywords

Navigation