Skip to main content
Log in

Bone formation is suppressed with multi-stressor military training

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 12 August 2014

Abstract

Purpose

To determine the effects of US Army Ranger Training, an 8-week, physically demanding program (energy expenditure of 2,500–4,500 kcal/day) with energy restriction (deficit of 1,000–4,000 kcal/day) and sleep deprivation (<4 h sleep/night) on bone metabolism.

Methods

Blood was collected from 22 men (age 24 ± 4 years) before and after training. Follow-up measurements were made in a subset of 8 subjects between 2 and 6 weeks after training. Serum was analyzed for bone formation biomarkers [bone alkaline phosphatase (BAP) and osteocalcin (OCN)], bone resorption biomarkers [C-telopeptide cross-links of type I collagen (CTX) and tartrate-resistant acid phosphatase (TRAP5b)], calcium, parathyroid hormone (PTH), and vitamin D (25(OH)D). Data were analyzed using a paired t test to compare baseline to immediate post-training measures. A repeated-measures ANOVA with time as the only factor was used to analyze data on the subset of 8 subjects who completed follow-up data collection.

Results

BAP and OCN significantly decreased by 22.8 ± 15.5 % (pre 41.9 ± 10.1; post 31.7 ± 7.8 ng/ml) and 21.0 ± 23.3 % (pre 15.0 ± 3.5; post 11.3 ± 2.1 ng/ml), respectively, with training, suggesting suppressed bone formation. OCN returned to baseline, while BAP remained suppressed 2–6 weeks post-training. TRAP5b significantly increased by 57.5 ± 51.6 % (pre 3.0 ± 0.9; post 4.6 ± 1.4 ng/ml) from pre- to post-training, suggesting increased bone resorption, and returned to baseline 2–6 weeks post-training. PTH Increased significantly by 37.3 ± 45.2 % with training. No changes in CTX, calcium, or PTH were detected.

Conclusions

These data indicate that multi-stressor military training results in increased bone resorption and suppressed bone formation, with recovery of bone metabolism 2–6 weeks after completion of training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

25(OH)D:

25-Hydroxyvitamin D

ANOVA:

Analysis of variance

BAP:

Bone alkaline phosphatase

CTX:

C-Telopeptide cross-links of type I collagen

CV:

Coefficient of variation

OCN:

Osteocalcin

P1NP:

Procollagen 1 N-terminal peptide

PTH:

Parathyroid Hormone

TRAP5b:

Tartrate-resistant acid phosphatase

References

  • Almeida SA, Williams KM, Shaffer RA, Brodine SK (1999) Epidemiological patterns of musculoskeletal injuries and physical training. Med Sci Sports Exerc 31(8):1176–1182

    Article  PubMed  CAS  Google Scholar 

  • Andersen NE, Karl JP, Cable SJ, Williams KW, Rood JC, Young AJ, Lieberman HR, McClung JP (2010) Vitamin D status in female military personnel during combat training. J Int Soc Sports Nutr 7:38. doi:10.1186/1550-2783-7-38

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bedford JL, Barr SI (2010) The relationship between 24-h urinary cortisol and bone in healthy young women. Int J Behav Med 17(3):207–215. doi:10.1007/s12529-009-9064-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Bentolila V, Boyce TM, Fyhrie DP, Drumb R, Skerry TM, Schaffler MB (1998) Intracortical remodeling in adult rat long bones after fatigue loading. Bone 23(3):275–281

    Article  PubMed  CAS  Google Scholar 

  • Biagioni MF, Mendes AL, Nogueira CR, Paiva SA, Leite CV, Mazeto GM (2014) Weight-reducing gastroplasty with Roux-en-Y gastric bypass: impact on vitamin D status and bone remodeling markers. Metab Syndr Relat Disord 12(1):11–15. doi:10.1089/met.2013.0026

    Article  PubMed  CAS  Google Scholar 

  • Chomistek AK, Chiuve SE, Jensen MK, Cook NR, Rimm EB (2011) Vigorous physical activity, mediating biomarkers, and risk of myocardial infarction. Med Sci Sports Exerc 43(10):1884–1890. doi:10.1249/MSS.0b013e31821b4d0a

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dennison E, Hindmarsh P, Fall C, Kellingray S, Barker D, Phillips D, Cooper C (1999) Profiles of endogenous circulating cortisol and bone mineral density in healthy elderly men. J Clin Endocrinol Metab 84(9):3058–3063

    PubMed  CAS  Google Scholar 

  • Diment BC, Fortes MB, Greeves JP, Casey A, Costa RJ, Walters R, Walsh NP (2012) Effect of daily mixed nutritional supplementation on immune indices in soldiers undertaking an 8-week arduous training programme. Eur J Appl Physiol 112(4):1411–1418. doi:10.1007/s00421-011-2096-8

    Article  PubMed  CAS  Google Scholar 

  • Evans RK, Antczak AJ, Lester M, Yanovich R, Israeli E, Moran DS (2008) Effects of a 4-month recruit training program on markers of bone metabolism. Med Sci Sports Exerc 40(11 Suppl):S660–S670. doi:10.1249/MSS.0b013e318189422b

    Article  PubMed  CAS  Google Scholar 

  • Everson CA, Folley AE, Toth JM (2012) Chronically inadequate sleep results in abnormal bone formation and abnormal bone marrow in rats. Exp Biol Med (Maywood) 237(9):1101–1109. doi:10.1258/ebm.2012.012043

    Article  CAS  Google Scholar 

  • Friedl KE, Moore RJ, Hoyt RW, Marchitelli LJ, Martinez-Lopez LE, Askew EW (2000) Endocrine markers of semistarvation in healthy lean men in a multistressor environment. J Appl Physiol 88(5):1820–1830

    PubMed  CAS  Google Scholar 

  • Gertz ER, Silverman NE, Wise KS, Hanson KB, Alekel DL, Stewart JW, Perry CD, Bhupathiraju SN, Kohut ML, Van Loan MD (2010) Contribution of serum inflammatory markers to changes in bone mineral content and density in postmenopausal women: a 1-year investigation. J Clin Densitom 13(3):277–282. doi:10.1016/j.jocd.2010.04.003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Greendale GA, Unger JB, Rowe JW, Seeman TE (1999) The relation between cortisol excretion and fractures in healthy older people: results from the MacArthur studies-Mac. J Am Geriatr Soc 47(7):799–803

    PubMed  CAS  Google Scholar 

  • Heaney RP (1994) The bone-remodeling transient: implications for the interpretation of clinical studies of bone mass change. J Bone Miner Res 9(10):1515–1523. doi:10.1002/jbmr.5650091003

    Article  PubMed  CAS  Google Scholar 

  • Henning PC, Scofield DE, Spiering BA, Staab JS, Matheny RW Jr, Smith MA, Bhasin S, Nindl BC (2014) Recovery of endocrine and inflammatory mediators following an extended energy deficit. J Clin Endocrinol Metab 99(3):956–964. doi:10.1210/jc.2013-3046

    PubMed  CAS  Google Scholar 

  • Jackson AS, Pollock ML (1978) Generalized equations for predicting body density of men. Br J Nutr 40(3):497–504

    Article  PubMed  CAS  Google Scholar 

  • Jones BH, Cowan DN, Tomlinson JP, Robinson JR, Polly DW, Frykman PN (1993) Epidemiology of injuries associated with physical training among young men in the army. Med Sci Sports Exerc 25(2):197–203

    Article  PubMed  CAS  Google Scholar 

  • Kaufman K, Brodine S, Shaffer R (1995) Musculoskeletal injuries in the military: literature review, summary, and recommendations. vol Technical Report. Naval Health Research Center San Diego, California

  • Kaufman KR, Brodine SK, Shaffer RA, Johnson CW, Cullison TR (1999) The effect of foot structure and range of motion on musculoskeletal overuse injuries. Am J Sports Med 27(5):585–593

    PubMed  CAS  Google Scholar 

  • Kerschan-Schindl K, Thalmann M, Sodeck GH, Skenderi K, Matalas AL, Grampp S, Ebner C, Pietschmann P (2009) A 246-km continuous running race causes significant changes in bone metabolism. Bone 45(6):1079–1083. doi:10.1016/j.bone.2009.07.088

    Article  PubMed  CAS  Google Scholar 

  • Kyrolainen H, Karinkanta J, Santtila M, Koski H, Mantysaari M, Pullinen T (2008) Hormonal responses during a prolonged military field exercise with variable exercise intensity. Eur J Appl Physiol 102(5):539–546. doi:10.1007/s00421-007-0619-0

    Article  PubMed  CAS  Google Scholar 

  • Lanyon LE (1987) Functional strain in bone tissue as an objective, and controlling stimulus for adaptive bone remodelling. J Biomech 20(11–12):1083–1093

    Article  PubMed  CAS  Google Scholar 

  • Lester ME, Urso ML, Evans RK, Pierce JR, Spiering BA, Maresh CM, Hatfield DL, Kraemer WJ, Nindl BC (2009) Influence of exercise mode and osteogenic index on bone biomarker responses during short-term physical training. Bone 45(4):768–776. doi:10.1016/j.bone.2009.06.001

    Article  PubMed  Google Scholar 

  • Lieberman HR, Castellani JW, Young AJ (2009) Cognitive function and mood during acute cold stress after extended military training and recovery. Aviat Space Environ Med 80(7):629–636

    Article  PubMed  Google Scholar 

  • Lips P, Hosking D, Lippuner K, Norquist JM, Wehren L, Maalouf G, Ragi-Eis S, Chandler J (2006) The prevalence of vitamin D inadequacy amongst women with osteoporosis: an international epidemiological investigation. J Intern Med 260(3):245–254. doi:10.1111/j.1365-2796.2006.01685.x

    Article  PubMed  CAS  Google Scholar 

  • Lutz LJ, Karl JP, Rood JC, Cable SJ, Williams KW, Young AJ, McClung JP (2012) Vitamin D status, dietary intake, and bone turnover in female Soldiers during military training: a longitudinal study. J Int Soc Sports Nutr 9(1):38. doi:10.1186/1550-2783-9-38

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martin R (2001) The role of bone remodeling in preventing or promoting stress fracture. In: Burr D, Milgrom C (eds) Musculoskeletal fatigue and stress fracture. CRC Press, Boca Raton

    Google Scholar 

  • Martin RB, Burr DB, Sharkey NA (1998) Skeletal tissue mechanics. Springer, New York

    Book  Google Scholar 

  • Mori S, Burr DB (1993) Increased intracortical remodeling following fatigue damage. Bone 14(2):103–109

    Article  PubMed  CAS  Google Scholar 

  • Nindl BC, Friedl KE, Marchitelli LJ, Shippee RL, Thomas CD, Patton JF (1996) Regional fat placement in physically fit males and changes with weight loss. Med Sci Sports Exerc 28(7):786–793

    Article  PubMed  CAS  Google Scholar 

  • Nindl BC, Barnes BR, Alemany JA, Frykman PN, Shippee RL, Friedl KE (2007) Physiological consequences of US Army Ranger training. Med Sci Sports Exerc 39(8):1380–1387. doi:10.1249/MSS.0b013e318067e2f700005768-200708000-00022

    Article  PubMed  Google Scholar 

  • Rauh MJ, Macera CA, Trone DW, Shaffer RA, Brodine SK (2006) Epidemiology of stress fracture and lower-extremity overuse injury in female recruits. Med Sci Sports Exerc 38(9):1571–1577. doi:10.1249/01.mss.0000227543.51293.9d

    Article  PubMed  Google Scholar 

  • Robling AG, Hinant FM, Burr DB, Turner CH (2002) Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res 17(8):1545–1554. doi:10.1359/jbmr.2002.17.8.1545

    Article  PubMed  Google Scholar 

  • Sheehan KM, Murphy MM, Reynolds K, Creedon JF, White J, Kazel M (2003) The response of a bone resorption marker to marine recruit training. Mil Med 168(10):797–801

    PubMed  Google Scholar 

  • Shin KA, Kim AC, Kim YJ, Lee YH, Shin YO, Kim SH, Park YS, Nam HS, Kim T, Kim HS, Park Y (2012) Effect of ultra-marathon (308 km) race on bone metabolism and cartilage damage biomarkers. Ann Rehabil Med 36(1):80–87. doi:10.5535/arm.2012.36.1.80

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugiyama T, Meakin LB, Browne WJ, Galea GL, Price JS, Lanyon LE (2012) Bones’ adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition. J Bone Miner Res 27(8):1784–1793. doi:10.1002/jbmr.1599

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Epker B, Frost HM (1964) Resorption precedes formative activity. Surg Forum 15:437–438

    PubMed  CAS  Google Scholar 

  • Warden SJ, Hurst JA, Sanders MS, Turner CH, Burr DB, Li J (2005) Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. J Bone Miner Res 20(5):809–816. doi:10.1359/jbmr.041222

    Article  PubMed  Google Scholar 

  • Zanker CL, Cooke CB (2004) Energy balance, bone turnover, and skeletal health in physically active individuals. Med Sci Sports Exerc 36(8):1372–1381

    Article  PubMed  CAS  Google Scholar 

  • Zanker CL, Swaine IL (2000) Responses of bone turnover markers to repeated endurance running in humans under conditions of energy balance or energy restriction. Eur J Appl Physiol 83(4–5):434–440

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by appointments to the Postgraduate Research Participation Program at the US Army Research Institute of Environmental Medicine administered by the Oak Ridge Institute for Science and Education through interagency agreement between the US Department of Energy and US Army Medical Research and Material Command (JMH and JRH).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie M. Hughes.

Additional information

Communicated by Olivier Seynnes.

The views, opinions, and/or findings in this report are those of the authors, and should not be construed as an official department of the army position, policy, or decision, unless so designated by other official documentation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hughes, J.M., Smith, M.A., Henning, P.C. et al. Bone formation is suppressed with multi-stressor military training. Eur J Appl Physiol 114, 2251–2259 (2014). https://doi.org/10.1007/s00421-014-2950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2950-6

Keywords

Navigation