Skip to main content
Log in

Substrate use and biochemical response to a 3,211-km bicycle tour in trained cyclists

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to assess the physiological adaptations in physically fit individuals to a period of intensified training. Ten trained males cycled outdoors ~170 km day−1 on 19 out of 21 days. Expired gas was collected on days 1 and 21 during maximal graded exercise and used for the determination of gross efficiency and whole body substrate use. Muscle biopsies were obtained before and after exercise on days 2 and 22 for the determination of mtDNA/gDNA ratio, gene expression, metabolic enzyme activity and glycogen use. Muscle glycogen before and after exercise, fat oxidation, and gross efficiency increased, carbohydrate oxidation decreased (p < 0.05), and VO2max did not change over the 21 days of training. Citrate synthase (CS), β-hydroxyacyl CoA dehydrogenase (β-HAD) and cytochrome c oxidase (COX) enzyme activity did not change with training. CS and β-HAD mRNA did not change with acute exercise or training. COX (subunit IV) mRNA increased with acute exercise (p < 0.05) but did not change over the 21 days. PGC-1α mRNA increased with acute exercise, but did not increase to the same degree on day 22 as it did on day 2 (p < 0.05). UCP3 mRNA decreased with training (p < 0.05). Acute exercise caused an increase in mitofusin2 (MFN2) mRNA (p < 0.05) and a trend for an increase in mtDNA/gDNA ratio (p = 0.057). However, training did not affect MFN2 mRNA or mtDNA/gDNA ratio. In response to 3,211 km of cycling, changes in substrate use and gross efficiency appear to be more profound than mitochondrial adaptations in trained individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bach D, Pich S, Soriano FX et al (2003) Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem 278:17190–17197. doi:10.1074/jbc.M212754200

    Article  PubMed  CAS  Google Scholar 

  • Bezaire V, Seifert EL, Harper ME (2007) Uncoupling protein-3: clues in an ongoing mitochondrial mystery. FASEB J 21:312–324. doi:10.1096/fj.06-6966rev

    Article  PubMed  CAS  Google Scholar 

  • Cadefau J, Green HJ, Cusso R, Ball-Burnett M, Jamieson G (1994) Coupling of muscle phosphorylation potential to glycolysis during work after short-term training. J Appl Physiol 76:2586–2593

    PubMed  CAS  Google Scholar 

  • Cartoni R, Leger B, Hock MB et al (2005) Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise. J Physiol 567:349–358. doi:10.1113/jphysiol.2005.092031

    Article  PubMed  CAS  Google Scholar 

  • Chesley A, Heigenhauser GJ, Spriet LL (1996) Regulation of muscle glycogen phosphorylase activity following short-term endurance training. Am J Physiol 270:E328–E335

    PubMed  CAS  Google Scholar 

  • Claypool SM (2009) Cardiolipin, a critical determinant of mitochondrial carrier protein assembly and function. Biochim Biophys Acta 1788:2059–2068. doi:10.1016/j.bbamem.2009.04.020

    Article  PubMed  CAS  Google Scholar 

  • Duhamel TA, Stewart RD, Tupling AR, Ouyang J, Green HJ (2007) Muscle sarcoplasmic reticulum calcium regulation in humans during consecutive days of exercise and recovery. J Appl Physiol 103:1212–1220. doi:10.1152/japplphysiol.00437.2007

    Article  PubMed  CAS  Google Scholar 

  • Dumke CL, Mark Davis J, Angela Murphy E et al (2009) Successive bouts of cycling stimulates genes associated with mitochondrial biogenesis. Eur J Appl Physiol 107:419–427. doi:10.1007/s00421-009-1143-1

    Article  PubMed  CAS  Google Scholar 

  • Green HJ, Bombardier E, Duhamel TA, Stewart RD, Tupling AR, Ouyang J (2008a) Metabolic, enzymatic, and transporter responses in human muscle during three consecutive days of exercise and recovery. Am J Physiol Regul Integr Comp Physiol 295:R1238–R1250. doi:10.1152/ajpregu.00171.2008

    Article  PubMed  CAS  Google Scholar 

  • Green HJ, Duhamel TA, Stewart RD, Tupling AR, Ouyang J (2008b) Dissociation between changes in muscle Na+ –K+ -ATPase isoform abundance and activity with consecutive days of exercise and recovery. Am J Physiol Endocrinol Metab 294:E761–E767. doi:10.1152/ajpendo.00751.2007

    Article  PubMed  CAS  Google Scholar 

  • Henderson GC, Fattor JA, Horning MA et al (2007) Lipolysis and fatty acid metabolism in men and women during the postexercise recovery period. J Physiol 584:963–981. doi:10.1113/jphysiol.2007.137331

    Article  PubMed  CAS  Google Scholar 

  • Hermansen L, Hultman E, Saltin B (1967) Muscle glycogen during prolonged severe exercise. Acta Physiol Scand 71:129–139

    Article  PubMed  CAS  Google Scholar 

  • Himms-Hagen J, Harper ME (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med (Maywood) 226:78–84

    CAS  Google Scholar 

  • Holloszy JO (1967) Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242:2278–2282

    PubMed  CAS  Google Scholar 

  • Holloszy JO (1975) Adaptation of skeletal muscle to endurance exercise. Med Sci Sports 7:155–164

    PubMed  CAS  Google Scholar 

  • Hurley BF, Hagberg JM, Allen WK et al (1984) Effect of training on blood lactate levels during submaximal exercise. J Appl Physiol 56:1260–1264

    PubMed  CAS  Google Scholar 

  • Hurley BF, Nemeth PM, Martin WH 3rd, Hagberg JM, Dalsky GP, Holloszy JO (1986) Muscle triglyceride utilization during exercise: effect of training. J Appl Physiol 60:562–567

    PubMed  CAS  Google Scholar 

  • Jemiolo B, Trappe S (2004) Single muscle fiber gene expression in human skeletal muscle: validation of internal control with exercise. Biochem Biophys Res Commun 320:1043–1050. doi:10.1016/j.bbrc.2004.05.223

    Article  PubMed  CAS  Google Scholar 

  • Jeukendrup AE, Wallis GA (2005) Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med 26(Suppl 1):S28–S37. doi:10.1055/s-2004-830512

    Article  PubMed  CAS  Google Scholar 

  • Lawn RM, Efstratiadis A, O’Connell C, Maniatis T (1980) The nucleotide sequence of the human beta-globin gene. Cell 21:647–651

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Wu PH, Tarr PT et al (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119:121–135. doi:10.1016/j.cell.2004.09.013

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Weaver D, Shirihai O, Hajnoczky G (2009) Mitochondrial ‘kiss-and-run’: interplay between mitochondrial motility and fusion–fission dynamics. EMBO J 28:3074–3089. doi:10.1038/emboj.2009.255

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2[-Delta Delta C(T)] Method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  • Lucia A, Earnest C, Arribas C (2003) The tour de France: a physiological review. Scand J Med Sci Sports 13:275–283

    Article  PubMed  Google Scholar 

  • Marcuello A, Gonzalez-Alonso J, Calbet JA, Damsgaard R, Lopez-Perez MJ, Diez-Sanchez C (2005) Skeletal muscle mitochondrial DNA content in exercising humans. J Appl Physiol 99:1372–1377. doi:10.1152/japplphysiol.00289.2005

    Article  PubMed  CAS  Google Scholar 

  • Menshikova EV, Ritov VB, Toledo FG, Ferrell RE, Goodpaster BH, Kelley DE (2005) Effects of weight loss and physical activity on skeletal muscle mitochondrial function in obesity. Am J Physiol Endocrinol Metab 288:E818–E825. doi:10.1152/ajpendo.00322.2004

    Article  PubMed  CAS  Google Scholar 

  • Menshikova EV, Ritov VB, Ferrell RE, Azuma K, Goodpaster BH, Kelley DE (2007) Characteristics of skeletal muscle mitochondrial biogenesis induced by moderate-intensity exercise and weight loss in obesity. J Appl Physiol 103:21–27. doi:10.1152/japplphysiol.01228.2006

    Article  PubMed  CAS  Google Scholar 

  • Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P (2003) Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res 31:e61

    Article  PubMed  Google Scholar 

  • Moseley L, Jeukendrup AE (2001) The reliability of cycling efficiency. Med Sci Sports Exerc 33:621–627

    Article  PubMed  CAS  Google Scholar 

  • Ono T, Isobe K, Nakada K, Hayashi JI (2001) Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet 28:272–275. doi:10.1038/90116

    Article  PubMed  CAS  Google Scholar 

  • Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GJ, Grant SM (1996) Progressive effect of endurance training on metabolic adaptations in working skeletal muscle. Am J Physiol 270:E265–E272

    PubMed  CAS  Google Scholar 

  • Pilegaard H, Saltin B, Neufer PD (2003) Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol 546:851–858 PHY_034850[pii]

    Article  PubMed  CAS  Google Scholar 

  • Schmutz S, Dapp C, Wittwer M, Vogt M, Hoppeler H, Fluck M (2006) Endurance training modulates the muscular transcriptome response to acute exercise. Pflugers Arch 451:678–687. doi:10.1007/s00424-005-1497-0

    Article  PubMed  CAS  Google Scholar 

  • Schrauwen P, Hesselink MK, Vaartjes I et al (2002) Effect of acute exercise on uncoupling protein 3 is a fat metabolism-mediated effect. Am J Physiol Endocrinol Metab 282:E11–E17

    PubMed  CAS  Google Scholar 

  • Schrauwen P, Russell AP, Moonen-Kornips E, Boon N, Hesselink MK (2005) Effect of 2 weeks of endurance training on uncoupling protein 3 content in untrained human subjects. Acta Physiol Scand 183:273–280. doi:10.1111/j.1365-201X.2004.01393.x

    Article  PubMed  CAS  Google Scholar 

  • Siri WE (1993) Body composition from fluid spaces and density: analysis of methods. 1961. Nutrition 9:480–491 discussion 480, 492

    PubMed  CAS  Google Scholar 

  • Szuhai K, Ouweland J, Dirks R et al (2001) Simultaneous A8344G heteroplasmy and mitochondrial DNA copy number quantification in myoclonus epilepsy and ragged-red fibers (MERRF) syndrome by a multiplex molecular beacon based real-time fluorescence PCR. Nucleic Acids Res 29:E13

    Article  PubMed  CAS  Google Scholar 

  • Tunstall RJ, Mehan KA, Wadley GD et al (2002) Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab 283:E66–E72. doi:10.1152/ajpendo.00475.2001

    PubMed  CAS  Google Scholar 

  • Wang S, Subramaniam A, Cawthorne MA, Clapham JC (2003) Increased fatty acid oxidation in transgenic mice overexpressing UCP3 in skeletal muscle. Diabetes Obes Metab 5:295–301 273[pii]

    Article  PubMed  CAS  Google Scholar 

  • Wende AR, Schaeffer PJ, Parker GJ et al (2007) A role for the transcriptional coactivator PGC-1alpha in muscle refueling. J Biol Chem 282:36642–36651. doi:10.1074/jbc.M707006200

    Article  PubMed  CAS  Google Scholar 

  • Wojtaszewski JF, MacDonald C, Nielsen JN et al (2003) Regulation of 5′AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab 284:E813–E822. doi:10.1152/ajpendo.00436.2002

    PubMed  CAS  Google Scholar 

  • Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA (2008) Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol 105:1462–1470. doi:10.1152/japplphysiol.90882.2008

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Research laboratory or the U.S. government. Sponsored by Air Force Research Laboratory under agreement number FA5650-06-2-6740 and the University of Montana Grant program. We would like to acknowledge the assistance of the Molecular Biology Core Facility of The University of Montana supported in part by National Center for Research Resources Grants P20RR017670 and P20RR015583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dustin R. Slivka.

Additional information

Communicated by Susan A. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slivka, D.R., Dumke, C.L., Hailes, W.S. et al. Substrate use and biochemical response to a 3,211-km bicycle tour in trained cyclists. Eur J Appl Physiol 112, 1621–1630 (2012). https://doi.org/10.1007/s00421-011-2129-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2129-3

Keywords

Navigation