Skip to main content
Log in

Global effect on multi-segment physiological tremors due to localized fatiguing contraction

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Physiological tremors within a limb are coupled, whereas between-limb tremors are thought to oscillate independently for a healthy subject. This study was undertaken to reinvestigate bilateral tremor relations and intra-limb tremor dynamics for a two-limb task after exhausting a single joint. Fifteen volunteers conducted prolonged tracking with the left (target) shoulder. Neuromuscular functions were monitored before and after the exercise-fatiguing intervention, including tracking displacement, muscle activity of the deltoid, and physiological tremors in the bilateral upper limbs. Localized fatiguing contraction degraded tracking accuracy and movement smoothness, accompanied by an increase in deltoid activation. Segment tremors in the bilateral limbs and inter-limb tremor coherences in 8–12 Hz increased, though coherence peaks in 5–8 Hz waned with fatigue response. Intra-limb tremor relations in the target and non-target limbs were also reorganized with unilateral fatiguing contraction. Tremor coupling in the arm-C7 complexes was enhanced, associated with tremor uncoupling in the forearm–arm and hand–forearm complexes. Tracking error in the pre- fatigue and post-fatigue conditions was predicted by different principal components that had high communalities with tremors of distal and proximal segments of the target limb, respectively. The adaptive changes in tremor dynamics were attributable to fatigue-induced enhancement of common central drive and decline in neural inputs of long-looped reflexes that diverge to contralateral segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Addamo PK, Farrow M, Hoy KE et al (2007) The effects of age and attention on motor overflow production—a review. Brain Res Rev 54:189–204

    Article  PubMed  Google Scholar 

  • Arihara M, Sakamoto K (1999) Contribution of motor unit activity enhanced by acute fatigue to physiological tremor of finger. Electromyogr Clin Neurophysiol 39:235–247

    PubMed  CAS  Google Scholar 

  • Armatas CA, Summers JJ, Bradshaw JL (1996) Handedness and performance variability as factors influencing mirror movement occurrence. J Clin Exp Neuropsychol 18:823–835

    Article  PubMed  CAS  Google Scholar 

  • Barnes GR, Asselman PT (1991) The mechanism of prediction in human smooth pursuit eye movements. J Physiol 439:439–461

    PubMed  CAS  Google Scholar 

  • Boonstra TW, Daffertshofer A, van Ditshuizen JC et al (2008) Fatigue-related changes in motor-unit synchronization of quadriceps muscles within and across legs. J Electromyogr Kinesiol 18:717–731

    Article  PubMed  CAS  Google Scholar 

  • Boonstra TW, van Wijk BC, Praamstra P, Daffertshofer A (2009) Corticomuscular and bilateral EMG coherence reflect distinct aspects of neural synchronization. Neurosci Lett 463:17–21

    Article  PubMed  CAS  Google Scholar 

  • Côté JN, Mathieu PA, Levin MF et al (2002) Movement reorganization to compensate for fatigue during sawing. Exp Brain Res 146:394–398

    Article  PubMed  Google Scholar 

  • Elble RJ (1996) Central mechanisms of tremor. J Clin Neurophysiol 13:133–144

    Article  PubMed  CAS  Google Scholar 

  • Enoka RM, Duchateau J (2008) Muscle fatigue: what, why and how it influences muscle function. J Physiol 586:11–23

    Article  PubMed  CAS  Google Scholar 

  • Farmer SF, Sheean GL, Mayston MJ et al (1998) Abnormal motor unit synchronization of antagonist muscles underlies pathological co-contraction in upper limb dystonia. Brain 121:801–814

    Article  PubMed  Google Scholar 

  • Fellows SJ, Töpper R, Schwarz M et al (1996) Stretch reflexes of the proximal arm in a patient with mirror movements: absence of bilateral long-latency components. Electroencephalogr Clin Neurophysiol 101:79–83

    Article  PubMed  CAS  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    PubMed  CAS  Google Scholar 

  • Gribble PL, Mullin LI, Cothros N et al (2003) Role of cocontraction in arm movement accuracy. J Neurophysiol 89:2396–2405

    Article  PubMed  Google Scholar 

  • Grosse P, Brown P (2003) Acoustic startle evokes bilaterally synchronous oscillatory EMG activity in the healthy human. J Neurophysiol 90:1654–1661

    Article  PubMed  Google Scholar 

  • Hägg GM (1992) Interpretation of EMG spectral alterations and alteration indexes at sustained contraction. J Appl Physiol 73:1211–1217

    PubMed  Google Scholar 

  • Hogan N, Flash T (1987) Moving gracefully quantitative theories of motor coordination. Trends Neurosci 10:170–174

    Article  Google Scholar 

  • Hoy KE, Fitzgerald PB, Bradshaw JL et al (2004) Investigating the cortical origins of motor overflow. Brain Res Brain Res Rev 46:315–327

    Article  PubMed  Google Scholar 

  • Huang CT, Hwang IS, Huang CC et al (2006) Exertion dependent alternations in force fluctuation and limb acceleration during sustained fatiguing contraction. Eur J Appl Physiol 97:362–371

    Article  PubMed  Google Scholar 

  • Huang CT, Huang CC, Young MS et al (2007) Age effect on fatigue-induced limb acceleration as a consequence of high-level sustained submaximal contraction. Eur J Appl Physiol 100:675–683

    Article  PubMed  Google Scholar 

  • Huffenus AF, Amarantini D, Forestier N (2006) Effects of distal and proximal arm muscles fatigue on multi-joint movement organization. Exp Brain Res 170:438–447

    Article  PubMed  Google Scholar 

  • Hwang IS, Abraham LD (2001) Quantitative EMG analysis to investigate synergistic coactivation of ankle and knee muscles during isokinetic ankle movement. Part 1: time amplitude analysis. J Electromyogr Kinesiol 11:319–325

    Article  PubMed  CAS  Google Scholar 

  • Hwang IS, Wu PS (2006) The reorganization of tremulous movements in the upper limb due to finger tracking maneuvers. Eur J Appl Physiol 98:191–201

    Article  PubMed  Google Scholar 

  • Hwang IS, Chen YC, Wu PS (2009a) Differential load impact upon arm tremor dynamics and coordinative strategy between postural holding and position tracking. Eur J Appl Physiol 105:945–957

    Article  PubMed  Google Scholar 

  • Hwang IS, Yang ZR, Huang CT et al (2009b) Reorganization of multidigit physiological tremors after repetitive contractions of a single finger. J Appl Physiol 106:966–974

    Article  PubMed  Google Scholar 

  • Kurtzer IL, Pruszynski JA, Scott SH (2008) Long-latency reflexes of the human arm reflect an internal model of limb dynamics. Curr Biol 18:449–453

    Article  PubMed  CAS  Google Scholar 

  • Liang N, Murakami T, Funase K et al (2008) Further evidence for excitability changes in human primary motor cortex during ipsilateral voluntary contractions. Neurosci Lett 433:135–140

    Article  PubMed  CAS  Google Scholar 

  • Legros A, Marshall HR, Beuter A et al (2010) Effects of acute hypoxia on postural and kinetic tremor. Eur J Appl Physiol 110:109–119

    Article  PubMed  CAS  Google Scholar 

  • Masuda K, Masuda T, Sadoyama T et al (1999) Changes in surface EMG parameters during static and dynamic fatiguing contractions. J Electromyogr Kinesiol 9:39–46

    Article  PubMed  CAS  Google Scholar 

  • Marsden CD, Meadows JC, Lange GW et al (1969) The relation between physiological tremor of the two hands in healthy subjects. Electroencephalogr Clin Neurophysiol 27:179–185

    Article  PubMed  CAS  Google Scholar 

  • Marsden JF, Brown P, Salenius S (2001) Involvement of the sensorimotor cortex in physiological force and action tremor. Neuroreport 12:1937–1941

    Article  PubMed  CAS  Google Scholar 

  • McAuley JH, Farmer SF, Rothwell JC et al (1999) Common 3 and 10 Hz oscillations modulate human eye and finger movements while they simultaneously track a visual target. J Physiol 515:905–917

    Article  PubMed  CAS  Google Scholar 

  • McAuley JH, Marsden CD (2000) Physiological and pathological tremors and rhythmic central motor control. Brain 123:1545–1567

    Article  PubMed  Google Scholar 

  • MacKay WA, Kwan HC, Murphy JT et al (1983) Stretch reflex modulation during a cyclic elbow movement. Electroencephalogr Clin Neurophysiol 55:687–698

    Article  PubMed  CAS  Google Scholar 

  • Missenard O, Mottet D, Perrey S (2008) The role of cocontraction in the impairment of movement accuracy with fatigue. Exp Brain Res 185:151–156

    Article  PubMed  Google Scholar 

  • Missenard O, Mottet D, Perrey S (2009) Adaptation of motor behavior to preserve task success in the presence of muscle fatigue. Neuroscience 161:773–786

    Article  PubMed  CAS  Google Scholar 

  • Morrison S, Newell KM (1996) Inter- and intra-limb coordination in arm tremor. Exp Brain Res 110:455–464

    Article  PubMed  CAS  Google Scholar 

  • Morrison S, Newell KM (1999) Bilateral organization of physiological tremor in the upper limb. Eur J Appl Physiol Occup Physiol 80:564–574

    Article  PubMed  CAS  Google Scholar 

  • Morrison S, Newell KM (2000) Postural and resting tremor in the upper limb. Clin Neurophysiol 111:651–663

    Article  PubMed  CAS  Google Scholar 

  • Morrison S, Kavanagh J, Obst SJ et al (2005) The effects of unilateral muscle fatigue on bilateral physiological tremor. Exp Brain Res 167:609–621

    Article  PubMed  CAS  Google Scholar 

  • Morrison S, Sosnoff JJ (2010) The impact of localized fatigue on contralateral tremor and muscle activity is exacerbated by standing posture. J Electromyogr Kinesiol 20:1211–1218

    Article  PubMed  CAS  Google Scholar 

  • Navas F, Stark L (1968) Sampling or intermittency in hand control system dynamics. Biophys J 8:252–302

    Article  PubMed  CAS  Google Scholar 

  • Ohki Y, Johansson RS (1999) Sensorimotor interactions between pairs of fingers in bimanual and unimanual manipulative tasks. Exp Brain Res 127:43–53

    Article  PubMed  CAS  Google Scholar 

  • Pedersen J, Ljubisavljevic M, Bergenheim M et al (1998) Alterations in information transmission in ensembles of primary muscle spindle afferents after muscle fatigue in heteronymous muscle. Neuroscience 84:953–959

    Article  PubMed  CAS  Google Scholar 

  • Post M, Bayrak S, Kernell D et al (2008) Contralateral muscle activity and fatigue in the human first dorsal interosseous muscle. J Appl Physiol 105:70–82

    Article  PubMed  Google Scholar 

  • Reynolds R, Lakie M (2010) Postmovement changes in the frequency and amplitude of physiological tremor despite unchanged neural output. J Neurophysiol 104:2020–2023

    Article  PubMed  Google Scholar 

  • Soechting JF, Lacquaniti F (1988) Quantitative evaluation of the electromyographic responses to multidirectional load perturbations of the human arm. J Neurophysiol 59:1296–1313

    PubMed  CAS  Google Scholar 

  • Selen LP, van Dieën JH, Beek PJ (2006) Impedance modulation and feedback corrections in tracking targets of variable size and frequency. J Neurophysiol 96:2750–2759

    Article  PubMed  Google Scholar 

  • Semmler JG, Tucker KJ, Allen TJ et al (2007) Eccentric exercise increases EMG amplitude and force fluctuations during submaximal contractions of elbow flexor muscles. J Appl Physiol 103:979–989

    Article  PubMed  Google Scholar 

  • Tang WT, Zhang WY, Huang CC et al (2008) Postural tremor and control of the upper limb in air pistol shooters. J Sports Sci 26:1579–1587

    PubMed  Google Scholar 

  • Todd G, Petersen NT, Taylor JL et al (2003) The effect of a contralateral contraction on maximal voluntary activation and central fatigue in elbow flexor muscles. Exp Brain Res 150:308–313

    PubMed  Google Scholar 

  • Vaillancourt DE, Newell KM (2000) Amplitude changes in the 8–12, 20–25, and 40 Hz oscillations in finger tremor. Clin Neurophysiol 111:1792–1801

    Article  PubMed  CAS  Google Scholar 

  • Vallbo AB, Wessberg J (1993) Organization of motor output in slow finger movements in man. J Physiol 469:673–691

    PubMed  CAS  Google Scholar 

  • Wessberg J, Vallbo AB (1995) Coding of pulsatile motor output by human muscle afferents during slow finger movements. J Physiol 485:271–282

    PubMed  CAS  Google Scholar 

  • Wing AM, Kristoffersen AB (1973) The timing of interresponse interval. Percept Psychophys 13:455–460

    Article  Google Scholar 

  • Zijdewind I, Kernell D (2001) Bilateral interactions during contractions of intrinsic hand muscles. J Neurophysiol 85:1907–1913

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by a grant from the National Science Council, R.O.C., under Grant No. NSC-94-2314-B-006-026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ing-Shiou Hwang.

Additional information

Communicated by Fausto Baldissera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YC., Yang, JF. & Hwang, IS. Global effect on multi-segment physiological tremors due to localized fatiguing contraction. Eur J Appl Physiol 112, 899–910 (2012). https://doi.org/10.1007/s00421-011-2044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2044-7

Keywords

Navigation