Skip to main content
Log in

Pulmonary adaptations to swim and inspiratory muscle training

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Because the anomalous respiratory characteristics of competitive swimmers have been suggested to be due to inspiratory muscle work, the respiratory muscle and pulmonary function of 30 competitively trained swimmers was assessed at the beginning and end of an intensive 12-week swim training (ST) program. Swimmers (n = 10) combined ST with either inspiratory muscle training (IMT) set at 80% sustained maximal inspiratory pressure (SMIP) with progressively increased work–rest ratios until task failure for 3-days per week (ST + IMT) or ST with sham-IMT (ST + SHAM-IMT, n = 10), or acted as controls (ST only, ST, n = 10). Measures of respiratory and pulmonary function were assessed at the beginning and end of the 12 week study period. There were no significant differences (P > 0.05) in respiratory and pulmonary function between groups (ST + IMT, ST + SHAM-IMT and ST) at baseline and at the end of the 12 week study period. However, within all groups significant increases (P < 0.05) were observed in a number of respiratory and pulmonary function variables at the end of the 12 week study, such as maximal inspiratory and expiratory pressure, inspiratory power output, forced vital capacity, forced expiratory and inspiratory volume in 1-s, total lung capacity and diffusion capacity of the lung. This study has demonstrated that there are no appreciable differences in terms of respiratory changes between elite swimmers undergoing a competitive ST program and those undergoing respiratory muscle training using the flow-resistive IMT device employed in the present study; as yet, the causal mechanisms involved are undefined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2

Similar content being viewed by others

References

  • American Thoracic Society (1995a) Single-breath carbon monoxide diffusing capacity (transfer factor). Recommendations for a standard technique—1995 update. Am J Respir Crit Care Med 152:2185–2198

    Google Scholar 

  • American Thoracic Society (1995b) Standardization of spirometry—1994 update. Am J Respir Crit Care Med 152:1107–1136

    Google Scholar 

  • Andrew GM, Becklake MR, Guleria JS, Bates DV (1972) Heart and lung functions in swimmers and nonathletes during growth. J Appl Physiol 32:245–251

    CAS  PubMed  Google Scholar 

  • Armour J, Donnelly PM, Bye PT (1993) The large lungs of elite swimmers: an increased alveolar number? Eur Respir J 6:237–247

    CAS  PubMed  Google Scholar 

  • ATS/ERS Statement on respiratory muscle testing (2002) Am J Respir Crit Care Med 166:518–624

    Google Scholar 

  • Barr-Or O, Unithan V, Illescas C (1994) Physiologic considerations in age group swimming. Med Sport Sci 39:199–205

    Google Scholar 

  • Bisschop A, Gayan-Ramirez G, Rollier H, Gosselink R, Dom R, de Bock V, Decramer M (1997) Intermittent inspiratory muscle training induces fiber hypertrophy in rat diaphragm. Am J Respir Crit Care Med 155:1583–1589

    CAS  PubMed  Google Scholar 

  • Bottinelli R, Schiaffino S, Reggiani C (1991) Force-velocity relations and heavy chain isoform compositions of skinned fibers from rat skeletal muscle. J Physiol 437:655–672

    CAS  PubMed  Google Scholar 

  • Chatham K, Baldwin J, Griffiths H, Summers L, Enright S (1999) Inspiratory muscle training improves shuttle run performance in healthy subjects. Physio J 85:676–683

    Google Scholar 

  • Chatham K, Ionescu AA, Nixon LS, Shale DJ (2004) A short-term comparsion of two methods of sputum expectoration in cystic fibrosis. Eur Respir J 23:435–439

    Article  CAS  PubMed  Google Scholar 

  • Clanton TL, Dixon GF, Drake J, Gadek JE (1987) Effects of swim training on lung volumes and inspiratory muscle conditioning. J Appl Physiol 62:39–46

    CAS  PubMed  Google Scholar 

  • Cordain L, Stager J (1988) Pulmonary structure and function in swimmers. Sports Med 6:271–278

    Article  CAS  PubMed  Google Scholar 

  • Cordain L, Tucker A, Moon D (1990) Lung volumes and maximal respiratory pressures in collegiate swimmers and runners. Res Q Exerc Sport 61:70–74

    CAS  PubMed  Google Scholar 

  • Courteix D, Obert P, Lecoq AM, Guenon P, Koch G (1997) Effect of intensive swimming training on lung volumes, airway resistance and on the maximal expiratory flow-volume relationship in prepubertal girls. Eur J Appl Physiol Occup Physiol 76:264–269

    Article  CAS  PubMed  Google Scholar 

  • Dempsey JA, Gledhill N, Reddan WG, Forster HV, Hanson PG, Claremont AD (1977) Pulmonary adaptation to exercise: effects of exercise type and duration, chronic hypoxia and physical training. Ann NY Acad Sci 301:243–261

    Article  CAS  PubMed  Google Scholar 

  • Doherty M, Dimitriou L (1997) Comparison of lung volume in Greek swimmers, land based athletes, and sedentary controls using allometric scaling. Br J Sports Med 31:337–341

    CAS  PubMed  Google Scholar 

  • Eastwood PR, Hillman DR, Morton AR, Finucane KE (1998) The effects of learning on the ventilatory responses to inspiratory threshold loading. Am J Respir Crit Care Med 158:1190–1196

    CAS  PubMed  Google Scholar 

  • Enright S, Chatham K, Ionescu AA, Unnithan VB, Shale DJ (2004) Inspiratory muscle training improves lung function and exercise capacity in adults with cystic fibrosis. Chest 126:405–411

    Article  PubMed  Google Scholar 

  • Enright SJ, Unnithan VB, Heward C, Withnall L, Davies DH (2006) Effect of high-intensity inspiratory muscle training on lung volumes, diaphragm thickness, and exercise capacity in subjects who are healthy. Phys Ther 86:345–354

    PubMed  Google Scholar 

  • Fanta CH, Leith DE, Brown R (1983) Maximal shortening of inspiratory muscles: effect of training. J Appl Physiol 54:1618–1623

    CAS  PubMed  Google Scholar 

  • Gething A, Williams M, Passfield L, Davies B (2003) A comparison of maximal and submaximal inspiratory muscle training protocols. J Sports Sci 21:322–323 (Abstract)

    Google Scholar 

  • Gething AD, Passfield L, Davies B (2004a) The effects of different inspiratory muscle training intensities on exercising heart rate and perceived exertion. Eur J Appl Physiol 92:50–55

    Article  CAS  PubMed  Google Scholar 

  • Gething AD, Williams M, Davies B (2004b) Inspiratory resistive loading improves cycling capacity: a placebo controlled trial. Br J Sports Med 38:730–736

    Article  CAS  PubMed  Google Scholar 

  • Harms CA (2006) Does gender affect pulmonary function and exercise capacity? Respir Physiol Neurobiol 151:124–131

    Article  PubMed  Google Scholar 

  • Hill NS, Jacoby C, Farber HW (1991) Effect of an endurance triathlon on pulmonary function. Med Sci Sports Exerc 23:1260–1264

    CAS  PubMed  Google Scholar 

  • Kaufmann DA, Swenson EW (1981) Pulmonary changes during marathon training: a longitudinal study. Respiration 41:217–223

    CAS  PubMed  Google Scholar 

  • Kohl J, Koller EA, Brandenberger M, Cardenas M, Boutellier U (1997) Effect of exercise-induced hyperventilation on airway resistance and cycling endurance. Eur J Appl Physiol Occup Physiol 75:305–311

    Article  CAS  PubMed  Google Scholar 

  • Kollias J, Boileau RA, Bartlett HL, Buskirk ER (1972) Pulmonary function and physical conditioning in lean and obese subjects. Arch Environ Health 25:146–150

    CAS  PubMed  Google Scholar 

  • Lavoie J-M, Leger LA, Leone M, Provencher PJ (1985) A maximal multistage swim test to determine the functional and maximal aerobic power of competitive swimmers. J Swim Res 1:17–22

    Google Scholar 

  • Leith DE, Bradley M (1976) Ventilatory muscle strength and endurance training. J Appl Physiol 41:508–516

    CAS  PubMed  Google Scholar 

  • Linari M, Bottinelli R, Pellegrino MA, Reconditi M, Reggiani C, Lombardi V (2004) The mechanism of the force response to stretch in human skinned muscle fibres with different myosin isoforms. J Physiol (Lond) 554:335–352

    Article  CAS  Google Scholar 

  • Lindley MR, Mickleborough TD, Thorniley CS, Bown RM (2004) Effect of learning and reliability on measures of inspiratory muscle function using a computerised resistive pressure manometer. Am J Respir Crit Care Med 169:A442 (Abstract)

    Google Scholar 

  • Lomax ME, McConnell AK (2003) Inspiratory muscle fatigue in swimmers after a single 200 m swim. J Sports Sci 21:659–664

    Article  PubMed  Google Scholar 

  • Magel JR, Andersen KL (1969) Pulmonary diffusing capacity and cardiac output in young trained Norwegian swimmers and untrained subjects. Med Sci Sports 1:131–139

    Google Scholar 

  • Martin BJ, Stager JM (1981) Ventilatory endurance in athletes and non-athletes. Med Sci Sports Exerc 13:21–26

    CAS  PubMed  Google Scholar 

  • McConnell AK, Romer LM (2004) Respiratory muscle training in healthy humans: resolving the controversy. Int J Sports Med 25:284–293

    Article  CAS  PubMed  Google Scholar 

  • Mickleborough TD, Nichols T, Chatham K, Lindley MR, Ionescu AA, Shale DJ (2003) The effect of high and low-intensity inspiratory muscle training on the physiological response to exercise in recreational runners. Am J Respir Crit Care Med 167:A541 (Abstract)

    Google Scholar 

  • Miller RL, Robison E, McCloskey JB, Picken J (1989) Pulmonary diffusing capacity as a predictor of performance in competitive swimming. J Sports Med Phys Fitness 29:91–96

    CAS  PubMed  Google Scholar 

  • Mostyn EM, Helle S, Gee JBL, Bentivoglio LG, Bates DV (1963) Pulmonary diffusion capacity of athletes. J Appl Physiol 18:687–695

    CAS  PubMed  Google Scholar 

  • Pherwani AV, Desai AG, Solepure AB (1989) A study of pulmonary function of competitive swimmers. Indian J Physiol Pharmacol 33:228–232

    CAS  PubMed  Google Scholar 

  • Powers SK, Lawler J, Criswell D, Dodd S, Grinton S, Bagby G, Silverman H (1990) Endurance-training-induced cellular adaptations in respiratory muscles. J Appl Physiol 68:2114–2118

    CAS  PubMed  Google Scholar 

  • Powers SK, Criswell D, Lieu F-K, Dodd S, Silverman H (1992) Diaphragmatic fiber type specific adaptation to endurance exercise. Respir Physiol 89:195–207

    Article  CAS  PubMed  Google Scholar 

  • Raven PB (1977) Pulmonary function of elite distance runners. Ann NY Acad Sci 301:371–381

    Article  CAS  PubMed  Google Scholar 

  • Reuschlein PS, Reddan WG, Burpee J, Gee JB, Rankin J (1968) Effect of physical training on the pulmonary diffusing capacity during submaximal work. J Appl Physiol 24:152–158

    CAS  PubMed  Google Scholar 

  • Rodriguez FA (2000) Maximal oxygen uptake and cardiorespiratory response to maximal 400-m free swimming, running and cycling tests in competitive swimmers. J Sports Med Phys Fitness 40:87–95

    CAS  PubMed  Google Scholar 

  • Rollier H, Bisschop A, Gayan-Ramirez G, Gosselink R, Decramer M (1998) Low load inspiratory muscle training increases diaphragmatic fiber dimensions in rats. Am J Respir Crit Care Med 157:833–839

    CAS  PubMed  Google Scholar 

  • Schoenberg JB, Beck GJ, Bouhuys A (1978) Growth and decay of pulmonary function in healthy blacks and whites. Respir Physiol 33:367–393

    Article  CAS  PubMed  Google Scholar 

  • Sinning WE, Adrian MJ (1968) Cardiorespiratory changes in college women due to a season of competitive basketball. J Appl Physiol 25:720–724

    CAS  PubMed  Google Scholar 

  • Tzelepis GE, Vega DL, Cohen ME, Fulambarker AM, Patel KK, McCool FD (1994) Pressure-flow specificity of inspiratory muscle training. J Appl Physiol 77:795–801

    CAS  PubMed  Google Scholar 

  • Tzelepis GE, Kasas V, McCool FD (1999) Inspiratory muscle adaptations following pressure or flow training in humans. Eur J Appl Physiol Occup Physiol 79:467–471

    Article  CAS  PubMed  Google Scholar 

  • Vaccaro P, Zauner CW, Updyke WF (1977) Resting and exercise respiratory function in well trained child swimmers. J Sports Med Phys Fitness 17:297–306

    CAS  PubMed  Google Scholar 

  • Vaccaro P, Clarke DH, Morris AF (1980) Physiological characteristics of young well-trained swimmers. Eur J Appl Physiol Occup Physiol 44:61–66

    Article  CAS  PubMed  Google Scholar 

  • Wells GD, Plyley M, Thomas S, Goodman L, Duffin J (2005) Effects of concurrent inspiratory and expiratory muscle training on respiratory and exercise performance in competitive swimmers. Eur J Appl Physiol 94:527–540

    Article  PubMed  Google Scholar 

  • Wilmore JH, Vodak PA, Parr RB, Girandola RN, Billing JE (1980) Further simplification of a method for determination of residual lung volume. Med Sci Sports Exerc 12:216–218

    CAS  PubMed  Google Scholar 

  • Wylegala JA, Pendergast DR, Gosselin LE, Warkander DE, Lundgren CE (2007) Respiratory muscle training improves swimming endurance in divers. Eur J Appl Physiol 99:393–404

    Article  PubMed  Google Scholar 

  • Yost LJ, Zauner CW, Jaeger MJ (1981) Pulmonary diffusing capacity and physical working capacity in swimmers and non-swimmers during growth. Respiration 42:8–14

    Article  CAS  PubMed  Google Scholar 

  • Zauner CW, Benson NY (1981) Physiological alterations in young swimmers during three years of intensive training. J Sports Med 21:179–185

    CAS  Google Scholar 

  • Zinman R, Gaultier C (1986) Maximal static pressures and lung volumes in young female swimmers. Respir Physiol 64:229–239

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy D. Mickleborough.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mickleborough, T.D., Stager, J.M., Chatham, K. et al. Pulmonary adaptations to swim and inspiratory muscle training. Eur J Appl Physiol 103, 635–646 (2008). https://doi.org/10.1007/s00421-008-0759-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0759-x

Keywords

Navigation