Skip to main content
Log in

Novel interval model applied to derived variables in static and structural problems

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this work, we further develop a newly proposed interval algebraic approach for analysis or design of structures involving uncertain interval-valued parameters. The methodology is based on an algebraic extension of classical interval arithmetic, namely Kaucher arithmetic, and within it the interval equilibrium equations can be completely satisfied by the primary unknown variables (displacements). Here this method is expanded to derived (secondary) variables—forces, strains and stresses which are of particular practical interest in design and strength of materials. Numerical examples are presented to illustrate the proposed methodology and to compare the algebraic interval approach to that based on classical interval arithmetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)

    MATH  Google Scholar 

  2. Ben-Haim, Y., Elishakoff, I.: Convex Models of Uncertainty in Applied Mechanics. Elsevier, Amsterdam (1990)

    MATH  Google Scholar 

  3. Du, J., Du, Z., Wei, Y., Zhang, W., Guo, X.: Exact response bound analysis of truss structures via linear mixed 0–1 programming and sensitivity bounding technique. Int. J. Numer. Methods Eng. 116, 21–42 (2018)

    Article  MathSciNet  Google Scholar 

  4. Elishakoff, I.: Convex modeling—a generalization of interval analysis for non-probabilistic treatment of uncertainty. In: Proceedings of the International Workshop on Applications of Interval Computations (APIC’95), pp. 76–79 (1995)

  5. Elishakoff, I., Gabriele, S., Wang, Y.: Generalized Galileo Galilei problem in interval setting for functionally related loads. Arch. Appl. Mech. 86(7), 1203–1217 (2016)

    Article  Google Scholar 

  6. Elishakoff, I., Ohsaki, M.: Optimization and Anti-optimization of Structures Under Uncertainty. World Scientific, Singapore (2010)

    Book  Google Scholar 

  7. Fuchs, M.B.: Unimodal formulation of the analysis and design problems for framed structures. Comput. Struct. 63, 739–747 (1997)

    Article  Google Scholar 

  8. Ioakimidis, N.I.: Computation of ranges of functions in problems of applied mechanics with the computational method of quantifier elimination, TR-2018-Q3, Nemertes: institutional repository of the University of Patras. http://nemertes.lis.upatras.gr/jspui/bitstream/10889/11605/1/TR-2018-Q3.pdf. Accessed Jan 2019 (2018)

  9. Kaucher, E.: Interval analysis in the extended interval space IR. Comput. Suppl. 2, 33–49 (1980)

    Article  MathSciNet  Google Scholar 

  10. Markov, S.M.: On directed interval arithmetic and its applications. J. Universal Comput. Sci. 1(7), 514–526 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Moens, D., Hanss, M.: Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: recent advances. Finite Elem. Anal. Des. 47, 4–16 (2011)

    Article  Google Scholar 

  12. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  13. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM Press, Philadelphia (2009)

    Book  Google Scholar 

  14. Muhanna, R.L.: Benchmarks for interval finite element computations, Center for Reliable Engineering Computing, Georgia Tech, USA. http://rec.ce.gatech.edu/resources/Benchmark_2.pdf. Accessed 12 Nov 2018 (2004)

  15. Muscolino, G., Sofi, A.: Stochastic analysis of structures with uncertain-but-bounded parameters via improved interval analysis. Probab. Eng. Mech. 28, 152–163 (2012)

    Article  Google Scholar 

  16. Popova, E.D.: The Arithmetic on Proper & Improper Intervals. http://www.math.bas.bg/~epopova/directed.html. Accessed 6 Dec 2018 (1996)

  17. Popova, E.D.: Multiplication distributivity of proper and improper intervals. Reliab. Comput. 7(2), 129–140 (2001)

    Article  MathSciNet  Google Scholar 

  18. Popova, E.D.: Computer-assisted proofs in solving linear parametric problems. In: The Proceedings of SCAN’06, p. 35, IEEE Computer Society Press (2006)

  19. Popova, E.D.: Improved solution to the generalized Galilei’s problem with interval loads. Arch. Appl. Mech. 87(1), 115–127 (2017)

    Article  Google Scholar 

  20. Popova, E.D.: Equilibrium equations in interval models of structures. Int. J. Reliab. Saf. 12(1/2), 218–235 (2018)

    Article  Google Scholar 

  21. Popova, E.D.: New parameterized solution with application to bounding secondary variables in FE models of structures. arXiv:1812.07300 (2018)

  22. Popova, E.D.: Algebraic solution to interval equilibrium equations of truss structures. Appl. Math. Model. 65, 489–506 (2019)

    Article  MathSciNet  Google Scholar 

  23. Qiu, Z., Elishakoff, I.: Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis. Comput. Methods Appl. Mech. Eng. 152, 361–372 (1998)

    Article  Google Scholar 

  24. Qiu, Z.P., Wang, L.: The need for introduction of non-probabilistic interval conceptions into structural analysis and design. Sci. China Phys. Mech. Astron. 59(11), 114632 (2016)

  25. Rama Rao, M.V., Mullen, R.L., Muhanna, R.L.: A new interval finite element formulation with the same accuracy in primary and derived variables. Int. J. Reliab. Saf. 5, 336–357 (2011)

    Article  Google Scholar 

  26. Sainz, M.A., Armengol, J., Calm, R., Herrero, P., Jorba, L., Vehi, J.: Modal Interval Analysis: New Tools for Numerical Information. Lecture Notes in Mathematics 2091, Springer (2014)

  27. Sofi, A., Romeo, E.: A novel interval finite element method based on the improved interval analysis. Comput. Methods Appl. Mech. Eng. 311, 671–697 (2016)

    Article  MathSciNet  Google Scholar 

  28. Sofi, A., Romeo, E., Barrera, O., Cocks, A.: An interval finite element method for the analysis of structures with spatially varying uncertainties. Adv. Eng. Softw. 128, 1–19 (2019)

    Article  Google Scholar 

  29. Su, J., Zhu, Y., Wang, J., Li, A., Yang, G.: An improved interval finite element method based on the element-by-element technique for large truss system and plane problems. Arch. Mech. Eng. 10(4), 1–10 (2018)

  30. Verhaeghe, W., Desmet, W., Vandepitte, D., Moens, D.: Interval fields to represent uncertainty on the output side of a static FE analysis. Comput. Methods Appl. Mech. Eng. 260, 50–62 (2013)

    Article  MathSciNet  Google Scholar 

  31. Wu, J., Luo, Z., Zhang, Y., Zhang, N., Chen, L.: Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. Int. J. Numer. Methods Eng. 95, 608–630 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is supported by the National Scientific Program “Information and Communication Technologies for a Single Digital Market in Science, Education and Security (ICTinSES)”, financed by the Bulgarian Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgenija D. Popova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, E.D., Elishakoff, I. Novel interval model applied to derived variables in static and structural problems. Arch Appl Mech 90, 869–881 (2020). https://doi.org/10.1007/s00419-019-01644-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01644-8

Keywords

Navigation