Skip to main content
Log in

Immunohistochemical detection of the pro-apoptotic Bax∆2 protein in human tissues

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The pro-apoptotic Bax isoform Bax∆2 was originally discovered in cancer patients with a microsatellite guanine deletion (G8 to G7). This deletion leads to an early stop codon; however, when combined with the alternative splicing of exon 2, the reading frame is restored allowing production of a full-length protein (Bax∆2). Unlike the parental Baxα, Bax∆2 triggers apoptosis through a non-mitochondrial pathway and the expression in human tissues was unknown. Here, we analyzed over 1000 tissue microarray samples from 13 different organs using immunohistochemistry. Bax∆2-positive cells were detected in all examined organs at low rates (1–5%) and mainly scattered throughout the connective tissues. Surprisingly, over 70% of normal colon samples scored high for BaxΔ2-positive staining. Only 7% of malignant colon samples scored high, with most high-grade tumors being negative. A similar pattern was observed in most organs examined. We also showed that both Baxα and Bax∆2 can co-exist in the same cells. Genotyping showed that the majority of Bax∆2-positive normal tissues contain no G7 mutation, but an unexpected high rate of G9 was observed. Although the underlying mechanism remains to be explored, the inverse correlation of Bax∆2 expression with tissue malignancy suggests that it may have a clinical implication in cancer development and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aarnio M, Sankila R, Pukkala E et al (1999) Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer 81:214–218

    CAS  PubMed  Google Scholar 

  • Advani VM, Dinman JD (2016) Reprogramming the genetic code: the emerging role of ribosomal frameshifting in regulating cellular gene expression. BioEssays 38:21–26

    CAS  PubMed  Google Scholar 

  • Akira T, Tohoku M (1998) The Bax gene, the promoter of apoptosis, is mutated in genetically unstable cancers of the colorectum, stomach and endometrium. Clin Cancer Res 4:1071–1074

    Google Scholar 

  • Atkins JF, Loughran G, Bhatt PR et al (2016) Ribosomal frameshifting and transcriptional slippage: from genetic steganography and cryptography to adventitious use. Nucleic Acids Res 44:7007–7078

    PubMed  PubMed Central  Google Scholar 

  • Baranov PV, Hammer AW, Zhou J et al (2005) Transcriptional slippage in bacteria: distribution in sequenced genomes and utilization in IS element gene expression. Genome Biol 6:R25

    PubMed  PubMed Central  Google Scholar 

  • Carpenter AE, Jones TR, Lamprecht MR et al (2006) Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100

    PubMed  PubMed Central  Google Scholar 

  • Cartron P-F, Oliver L, Martin S et al (2002) The expression of a new variant of the pro-apoptotic molecule Bax, Baxpsi, is correlated with an increased survival of glioblastoma multiforme patients. Hum Mol Genet 11:675–687

    CAS  Google Scholar 

  • Clark MB, Jänicke M, Gottesbühren U et al (2007) Mammalian gene PEG10 expresses two reading frames by high efficiency-1 frameshifting in embryonic-associated tissues. J Biol Chem 282:37359–37369

    CAS  PubMed  Google Scholar 

  • Dinman JD (2006) Programmed ribosomal frameshifting goes beyond viruses: organisms from all three kingdoms use frameshifting to regulate gene expression, perhaps signaling a paradigm shift. Microbe Wash DC 1:521–527

    PubMed  PubMed Central  Google Scholar 

  • Duval A, Hamelin R (2002) Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res 62:2447–2454

    CAS  PubMed  Google Scholar 

  • Elgamal S, Katz A, Hersch SJ et al (2014) EF-P dependent pauses integrate proximal and distal signals during translation. PLoS Genet. https://doi.org/10.1371/journal.pgen.1004553

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu NY, Sukumaran SK, Kerk SY, Yu VC (2009) Baxβ: a constitutively active human bax isoform that is under tight regulatory control by the proteasomal degradation mechanism. Mol Cell 33:15–29

    CAS  PubMed  Google Scholar 

  • Gesteland RF, Atkins JF (1996) Recoding: dynamic reprogramming of translation. Annu Rev Biochem 65:741–768

    CAS  PubMed  Google Scholar 

  • Grady WM, Myeroff LL, Swinler SE et al (1999) Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res 59:320–324

    CAS  PubMed  Google Scholar 

  • Haferkamp B, Zhang H, Kissinger S et al (2013) BaxΔ2 family alternative splicing salvages Bax microsatellite-frameshift mutations. Genes and Cancer 4:501–512

    CAS  PubMed  Google Scholar 

  • Haferkamp B, Zhang H, Lin Y et al (2012) Bax∆2 is a novel bax isoform unique to microsatellite unstable tumors. J Biol Chem 287:34722–34729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch FR, Varella-Garcia M, Bunn PA et al (2003) Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 21:3798–3807

    CAS  PubMed  Google Scholar 

  • Ivanov IP, Atkins JF (2007) Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Res 35:1842–1858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin KL, Graham SH, Mao XO et al (2001) Bax κ, a novel Bax splice variant from ischemic rat brain lacking an ART domain, promotes neuronal cell death. J Neurochem 77:1508–1519

    CAS  PubMed  Google Scholar 

  • Kawaguchi M, Banno K, Yanokura M et al (2009) Analysis of candidate target genes for mononucleotide repeat mutation in microsatellite instability-high (MSI-H) endometrial cancer. Int J Oncol 35:977–982

    CAS  PubMed  Google Scholar 

  • Ketteler R (2012) On programmed ribosomal frameshifting: the alternative proteomes. Front Genet 3:1–10

    Google Scholar 

  • Krajewski S, Krajewska M, Shabaik A et al (1994) Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol 145:1323–1336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linton MF, Pierotti V, Young SG (1992) Reading-frame restoration with an apolipoprotein B gene frameshift mutation. Proc Natl Acad Sci USA 89:11431–11435

    CAS  PubMed  Google Scholar 

  • Linton MF, Raabe M, Pierotti V, Young SG (1997) Reading-frame restoration by transcriptional slippage at long stretches of adenine residues in mammalian cells. J Biol Chem 272:14127–14132

    CAS  PubMed  Google Scholar 

  • Mañas A, Chen W, Nelson A et al (2018a) BaxΔ2 sensitizes colorectal cancer cells to proteasome inhibitor-induced cell death. Biochem Biophys Res Commun 496:18–24

    PubMed  Google Scholar 

  • Mañas A, Davis A, Lamerand S, Xiang J (2018b) Detection of pro-apoptotic Bax∆2 proteins in the human cerebellum. Histochem Cell Biol 150:77–82

    PubMed  PubMed Central  Google Scholar 

  • Mañas A, Wang S, Nelson A et al (2017) The functional domains for Bax∆2 aggregate-mediated caspase 8-dependent cell death. Exp Cell Res 359:342–355

    PubMed  PubMed Central  Google Scholar 

  • Manktelow E, Shigemoto K, Brierley I (2005) Characterization of the frameshift signal of Edr, a mammalian example of programmed-1 ribosomal frameshifting. Nucleic Acids Res 33:1553–1563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsufuji S, Matsufuji T, Miyazaki Y et al (1995) Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80:51–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mutter GL, Wada H, Faquin WC, Enomoto T (1999) K-ras mutations appear in the premalignant phase of both microsatellite stable and unstable endometrial carcinogenesis. J Clin Pathol 52:257–262

    CAS  Google Scholar 

  • Namy O, Rousset JP, Napthine S, Brierley I (2004) Reprogrammed genetic decoding in cellular gene expression. Mol Cell 13:157–168

    CAS  PubMed  Google Scholar 

  • Navani S (2011) The human protein atlas. J Obstet Gynecol India 61:27–31

    Google Scholar 

  • Peltomäki P (2003) Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol 21:1174–1179

    PubMed  Google Scholar 

  • Penault-Llorca F, Bouabdallah R, Devilard E et al (1998) Analysis of BAX expression in human tissues using the anti-BAX, 4F11 monoclonal antibody on paraffin sections. Pathol Res Pract 194:457–464

    CAS  PubMed  Google Scholar 

  • Pirker R, Pereira JR, Von Pawel J et al (2012) EGFR expression as a predictor of survival for first-line chemotherapy plus cetuximab in patients with advanced non-small-cell lung cancer: analysis of data from the phase 3 FLEX study. Lancet Oncol 13:33–42

    CAS  PubMed  Google Scholar 

  • Ratinier M, Boulant S, Combet C et al (2008) Transcriptional slippage prompts recoding in alternate reading frames in the hepatitis C virus (HCV) core sequence from strain HCV-1. J Gen Virol 89:1569–1578

    CAS  PubMed  Google Scholar 

  • Schmitt E, Paquet C, Beauchemin M et al (2000) Characterization of Bax-σ, a cell death-inducing isoform of Bax. Biochem Biophys Res Commun 270:868–879

    CAS  PubMed  Google Scholar 

  • Shi B, Triebe D, Kajiji S et al (1999) Identification and characterization of Baxε, a novel Bax variant missing the BH2 and the transmembrane domains. Biochem Biophys Res Commun 254:779–785

    CAS  PubMed  Google Scholar 

  • Shigemoto K, Brennan J, Walls E et al (2001) Identification and characterisation of a developmentally regulated mammalian gene that utilises-1 programmed ribosomal frameshifting. Nucleic Acids Res 29:4079–4088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Starosta AL, Lassak J, Peil L et al (2014) Translational stalling at polyproline stretches is modulated by the sequence context upstream of the stall site. Nucleic Acids Res 42:10711–10719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vermulst M, Denney AS, Lang MJ et al (2015) Transcription errors induce proteotoxic stress and shorten cellular lifespan. Nat Commun 6:8065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wills NM, Moore B, Hammer A et al (2006) A functional-1 ribosomal frameshift signal in the human paraneoplastic Ma3 gene. J Biol Chem 281:7082–7088

    CAS  PubMed  Google Scholar 

  • Yagi OK, Akiyama Y, Nomizu T et al (1998) Proapoptotic gene BAX is frequently mutated in hereditary nonpolyposis colorectal cancers but not in adenomas. Gastroenterology 114:268–274

    CAS  PubMed  Google Scholar 

  • Yamamoto H, Imai K, Perucho M (2002) Gastrointestinal cancer of the microsatellite mutator phenotype pathway. J Gastroenterol 37:153–163

    CAS  PubMed  Google Scholar 

  • Yordanova MM, Wu C, Andreev DE et al (2015) A nascent peptide signal responsive to endogenous levels of polyamines acts to stimulate regulatory frameshifting on antizyme mRNA. J Biol Chem 290:17863–17878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Lin Y, Mañas A et al (2014) BaxΔ2 promotes apoptosis through caspase-8 activation in microsatellite-unstable colon cancer. Mol Cancer Res 12:1225–1232

    CAS  PubMed  Google Scholar 

  • Zhang H, Tassone C, Lin N et al (2015) Detection of Bax microsatellite mutations and BaxΔ2 isoform in human buccal cells. J Cell Sci Ther. https://doi.org/10.4172/2157-7013

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. John Hart from the University of Chicago (Department of Pathology) for his assistance regarding tumor pathology, and Dr. Li Ma from Mumetel LLC for providing his expertise for microsatellite genotyping. We also would like to thank our students Jodi Curtin, Irena Grauzinis and Ana Marija Fonceva, for their contribution. Imaging work was performed at the Northwestern University Center for Advanced Microscopy generously supported by NCI CCSG P30 CA060553 awarded to the Robert H. Lurie Comprehensive Cancer Center.

Funding

This work was supported by the National Institutes of Health R15 CA195526.

Author information

Authors and Affiliations

Authors

Contributions

AM, HHZ and JX contributed to experimental design. AM, QY, AD, EB, JL, and AN performed the experiments. AM and SB performed the computational analysis of the tissues. AM, HYZ, QY, HHZ and JX contributed to data analysis and interpretation. AM and JX wrote the manuscript. All authors reviewed the results and approved the final manuscript.

Corresponding author

Correspondence to Jialing Xiang.

Ethics declarations

Conflict of interest

Dr. Xiang has a patent related to this project but has not received any financial compensation in association with the patent or this work. All authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mañas, A., Yao, Q., Davis, A. et al. Immunohistochemical detection of the pro-apoptotic Bax∆2 protein in human tissues. Histochem Cell Biol 154, 41–53 (2020). https://doi.org/10.1007/s00418-020-01874-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-020-01874-w

Keywords

Navigation