Skip to main content
Log in

Investigation of photosensitively bioconjugated targeted quantum dots for the labeling of Cu/Zn superoxide dismutase in fixed cells and tissue sections

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

This study presents the development of targeted and antibody cross-linked QDs and explores whether these bioconjugates could specifically and effectively label Cu/Zn superoxide dismutase (SOD1) on fixed cells and tissues. QD-antibody conjugation was achieved by using our previously invented AmiNoacid (monomer) Decorated and Light Underpining Conjugation Approach (ANADOLUCA) method. In this method, we have used a photosensitive aminoacid monomer having ruthenium complex which is a synthetic and inexpensive material for the preparation of bioconjugates. Its specificity was demonstrated by extracting the active enzyme from rat liver lysate by using the bioconjugate. It provided accurate antibody orientation, high specificity and mechanic stability. The protocol steps for QD-antibody conjugation and specimen preparation were described in detail. The nanobioconjugates were prepared under mild conditions (for example in day light), independent of pH and temperature, without affecting conformation and function of protein. This protocol is simple, inexpensive and can be successfully adapted to detect other targets on different cell types and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bancroft JD, Gamble M (2002) Theory and practice of histological techniques. E.P. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Catimel B, Rothacker J, Nice E (2001) The use of biosensors for microaffinity purification: an integrated approach to proteomics. J Biochem Biophys Methods 49:289–312

    Article  PubMed  CAS  Google Scholar 

  • Chang LY, Slot JW, Geuze HJ, Crapo JD (1988) Molecular immunocytochemistry of the Cu, Zn superoxide dismutase in rat hepatocytes. J Cell Biol 107(6):2169–2179

    Article  PubMed  CAS  Google Scholar 

  • Dahan M (2006) From analog to digital: exploring cell dynamics with single quantum dots. Histochem Cell Biol 125:451–456

    Article  PubMed  CAS  Google Scholar 

  • Deerinck TJ (2008) The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging. Toxicol Pathol 36:112–116

    Article  PubMed  CAS  Google Scholar 

  • Diltemiz SE, Say R, Büyüktiryaki S, Hür D, Denizli A, Ersöz A (2008) Quantum dot nanocrystals having guanosine imprinted nanoshell for DNA recognition. Talanta 75:890–896

    Article  PubMed  CAS  Google Scholar 

  • Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634

    Article  PubMed  CAS  Google Scholar 

  • Ghasemi Y, Peymani P, Afifi S (2009) Quantum dot: magic nanoparticle for imaging, detection and targeting. Acta Biomed 80:156–165

    PubMed  Google Scholar 

  • Giepmans BN (2008) Bridging fluorescence microscopy and electron microscopy. Histochem Cell Biol 130(2):211–217

    Article  PubMed  CAS  Google Scholar 

  • Hür D, Ekti SF, Say R (2007) N-Acylbenzotriazole mediated synthesis of some methacrylamido amino acids. Lett Org Chem 4(8):585–587

    Article  Google Scholar 

  • Jamiesona T, Bakhshia R, Petrovaa D, Pococka R, Imanib M, Seifaliana AM (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732

    Article  Google Scholar 

  • Kawamata H, Manfredi G (2008) Different regulation of wild-type and mutant Cu, Zn superoxide dismutase localization in mammalian mitochondria. Hum Mol Genet 17(21):3303–3317

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni SK, Ethiraj AS, Kharrazi S, Deobagkar DN, Deobagkar DD (2005) Synthesis and spectral properties of DNA capped CdS nanoparticles in aqueous and non-aqueous media. Biosens Bioelectron 21:95–102

    Article  PubMed  CAS  Google Scholar 

  • Kumar SV, Jain R, Mokhiber K, Venezia A, Sheehan A, Spivack DS (2005) Exfoliated buccal and microdissected lung cell expression of antioxidant enzymes. Cancer Detect Prev 29:552–561

    Article  PubMed  CAS  Google Scholar 

  • Ladha S, Mackie AR, Clark DC (1994) Cheek cell membrane fluidity measured by fluorescence recovery after photobleaching and steady-state fluorescence anisotropy. J Membr Biol 142:223–228

    PubMed  CAS  Google Scholar 

  • Matsumoto AO, Fridovich I (2001) Subcellular distribution of superoxide dismutases in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem 276(42):38388–38393

    Article  Google Scholar 

  • Mattoussi H, Medintz IL, Clapp AR et al (2004) Luminescent quantum dot-b, oconjugates in immunoassays, FRET, biosensing and imaging applications. J Assoc Lab Autom 9:28–32

    Article  CAS  Google Scholar 

  • Michalet X, Pinaud FF, Bentolila LL et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  PubMed  CAS  Google Scholar 

  • Parak WJ, Pellegrino T, Plank C (2005) Labelling of cells with quantum dots. Nanotechnology 16:R9–R25

    Article  CAS  Google Scholar 

  • Say R (2009) Photosensitive aminoacid-monomer linkage and bioconjugation applications in life sciences and biotechnology. PCT/IB2009/055707 (applied for)

  • Skepper JN, Powell JM (2008) Immunogold staining of London resin white sections for transmission electron microscopy (TEM). CSH Protoc. doi:10.1101/pdb.prot5016

  • Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Del Rev 60:1226–1240

    Article  CAS  Google Scholar 

  • Stringer RC, Schommer S, Hoehn D, Grant SA (2008) Development of an optical biosensor using gold nanoparticles and quantum dots for the detection of porcine reproductive and respiratory syndrome virus. Sens Act B 134:427–431

    Article  Google Scholar 

  • Sweeney E, Ward TH, Gray N, Womack C, Jayson G, Hughes A, Dive C, Byers R (2008) Quantitative multiplexed quantum dot immunohistochemistry. Biochem Biophys Res Commun 374:181–186

    Article  PubMed  CAS  Google Scholar 

  • Turkova J (1999) Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J Chromatogr B 722:11–31

    Article  CAS  Google Scholar 

  • Wang HZ, Wang HY, Liang RQ, Ruan KC (2004) Detection of tumor marker CA125 in ovarian carcinoma using quantum dots. Acta Biochim Biophys Sin 36(10):681–686

    Article  PubMed  CAS  Google Scholar 

  • Winterbourn C, Hawkins R, Brian M, Carrell R (1975) The estimation of red cell superoxide dismutase activity. J Lab Clin Med 85:337–341

    PubMed  CAS  Google Scholar 

  • Xing Y, Chaudry Q, Shen C et al (2007) Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc 2(5):1152–1165

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Xing B, Rao J (2006) A self-assembled quantum dot probe for detecting b-lactamase activity. Biochem Biophys Res Commun 344:931–935

    Article  PubMed  CAS  Google Scholar 

  • Yoo J, Kambara T, Gonda K, Higuchi H (2008) Intracellular imaging of targeted proteins labeled with quantum dots. Exp Cell Res 314:3563–3569

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridvan Say.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Say, R., Kiliç, G.A., Özcan, A.A. et al. Investigation of photosensitively bioconjugated targeted quantum dots for the labeling of Cu/Zn superoxide dismutase in fixed cells and tissue sections. Histochem Cell Biol 135, 523–530 (2011). https://doi.org/10.1007/s00418-011-0801-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-011-0801-7

Keywords

Navigation