Skip to main content

Advertisement

Log in

Comparison of frequency doubling and flicker defined form perimetry in early glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To compare perimetric data based on the second-generation frequency doubling technology (FDT) and on flicker defined form (FDF) stimulation in early glaucoma patients.

Methods

Seventy-two experienced glaucoma patients and 50 healthy subjects of the Erlangen Glaucoma Registry participated in the study. The definition of glaucoma was solely based on optic disc appearance. All patients underwent FDF perimetry (HEP), FDT perimetry (Matrix), standard automated perimetry (SAP, Octopus), and peripapillar measurements of the RNFL thickness (Spectralis OCT). Exclusion criteria were: mean defect (MD) in SAP > 6 dB, eye diseases other than glaucoma, or non-reliable FDF or FDT measurements. Statistical analyses included comparison of the standard indices and correlations between methods. Venn-diagrams show the number of patients with abnormal results in HEP, Matrix, SAP, and mean RNFL thickness.

Results

Mean defect data from FDT and FDF perimetry were strongly correlated (R = −0.85, P <0.001). In this cohort of early glaucoma patients, the MD values were 6.1 ± 5.0 dB (FDF) and 4.5 ± 4.1 dB (FDT). Sensitivity in this patient group was 65 % for FDF-MD, 60 % for FDT-MD, and 60 % for RNFL-thickness, all at a specificity of 95 %. The correlation analysis between local RNFL thickness and corresponding visual defects revealed significant Spearman correlation coefficients for the arcuate bundles of the visual field (FDF-inferior: R = −0.65, FDF-superior: R = −0.74, FDT-inferior: R = −0.55, FDT-superior: R = −0.72).

Conclusion

FDF and FDT stimulations can be used to detect patients with early glaucoma. Combined consideration of RNFL thickness and results from one of these perimetric tests can increase the total number of detected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Casson R, James B, Rubinstein A, Ali H (2001) Clinical comparison of frequency doubling technology perimetry and Humphrey perimetry. Br J Ophthalmol 85(3):360–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paczka JA, Friedman DS, Quigley HA, Barron Y, Vitale S (2001) Diagnostic capabilities of frequency-doubling technology, scanning laser polarimetry, and nerve fiber layer photographs to distinguish glaucomatous damage. Am J Ophthalmol 131(2):188–197

    Article  CAS  PubMed  Google Scholar 

  3. Sample PA, Medeiros FA, Racette L, Pascual JP, Boden C, Zangwill LM, Bowd C, Weinreb RN (2006) Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study. Invest Ophthalmol Vis Sci 47(8):3381–3389

    Article  PubMed  Google Scholar 

  4. Anderson AJ, Johnson CA (2003) Frequency-doubling technology perimetry. Ophthalmol Clin North Am 16(2):213–225

    Article  PubMed  Google Scholar 

  5. Tyler CW (1981) Specific deficits of flicker sensitivity in glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 20(2):204–212

    CAS  PubMed  Google Scholar 

  6. Nomoto H, Matsumoto C, Takada S, Hashimoto S, Arimura E, Okuyama S, Shimomura Y (2009) Detectability of glaucomatous changes using SAP, FDT, flicker perimetry, and OCT. J Glaucoma 18(2):165–171

    Article  PubMed  Google Scholar 

  7. Matsumoto C, Takada S, Okuyama S, Arimura E, Hashimoto S, Shimomura Y (2006) Automated flicker perimetry in glaucoma using Octopus 311: a comparative study with the Humphrey Matrix. Acta Ophthalmol Scand 84(2):210–215

    Article  PubMed  Google Scholar 

  8. Zeppieri M, Brusini P, Parisi L, Johnson CA, Sampaolesi R, Salvetat ML (2010) Pulsar perimetry in the diagnosis of early glaucoma. Am J Ophthalmol 149(1):102–112

    Article  PubMed  Google Scholar 

  9. Salvetat ML, Zeppieri M, Tosoni C, Parisi L, Brusini P (2010) Non-conventional perimetric methods in the detection of early glaucomatous functional damage. Eye (Lond) 24(5):835–842

    Article  CAS  Google Scholar 

  10. Lachenmayr BJ, Drance SM, Douglas GR, Mikelberg FS (1991) Light-sense, flicker and resolution perimetry in glaucoma: a comparative study. Graefes Arch Clin Exp Ophthalmol 229(3):246–251

    Article  CAS  PubMed  Google Scholar 

  11. Horn FK, Jonas JB, Korth M, Junemann A, Grundler A (1997) The full-field flicker test in early diagnosis of chronic open-angle glaucoma. Am J Ophthalmol 123(3):313–319

    Article  CAS  PubMed  Google Scholar 

  12. Racette L, Medeiros FA, Zangwill LM, Ng D, Weinreb RN, Sample PA (2008) Diagnostic accuracy of the Matrix 24–2 and original N-30 frequency-doubling technology tests compared with standard automated perimetry. Invest Ophthalmol Vis Sci 49(3):954–960

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sample PA, Bosworth CF, Blumenthal EZ, Girkin C, Weinreb RN (2000) Visual function-specific perimetry for indirect comparison of different ganglion cell populations in glaucoma. Invest Ophthalmol Vis Sci 41(7):1783–1790

    CAS  PubMed  Google Scholar 

  14. Spry PG, Johnson CA, Mansberger SL, Cioffi GA (2005) Psychophysical investigation of ganglion cell loss in early glaucoma. J Glaucoma 14(1):11–19

    Article  PubMed  Google Scholar 

  15. Kamantigue ME, Joson PJ, Chen PP (2006) Prediction of visual field defects on standard automated perimetry by screening C-20-1 frequency doubling technology perimetry. J Glaucoma 15(1):35–39

    Article  PubMed  Google Scholar 

  16. Medeiros FA, Sample PA, Weinreb RN (2004) Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss. Am J Ophthalmol 137(5):863–871

    Article  PubMed  Google Scholar 

  17. Landers JA, Goldberg I, Graham SL (2003) Detection of early visual field loss in glaucoma using frequency-doubling perimetry and short-wavelength automated perimetry. Arch Ophthalmol 121(12):1705–1710

    Article  PubMed  Google Scholar 

  18. Heeg GP, Blanksma LJ, Hardus PL, Jansonius NM (2005) The Groningen Longitudinal Glaucoma Study. I Baseline sensitivity and specificity of the frequency doubling perimeter and the GDx nerve fibre analyser. Acta Ophthalmol Scand 83(1):46–52

    Article  PubMed  Google Scholar 

  19. Johnson CA, Demirel S (1997) The role of spatial and temporal factors in frequency-doubling perimetry. In: Wall M, Heijl A (eds) Perimetry Update 1996/1997; Proceeding of the XIIth International Perimetric Society Meeting. Kugler Publications, Amsterdam, pp 13–19

    Google Scholar 

  20. Quaid PT, Flanagan JG (2005) Defining the limits of flicker defined form: effect of stimulus size, eccentricity and number of random dots. Vision Res 45(8):1075–1084

    Article  CAS  PubMed  Google Scholar 

  21. Lamparter J, Russell RA, Schulze A, Schuff AC, Pfeiffer N, Hoffmann EM (2012) Structure-function relationship between FDF, FDT, SAP, and scanning laser ophthalmoscopy in glaucoma patients. Invest Ophthalmol Vis Sci 53(12):7553–7559

    Article  CAS  PubMed  Google Scholar 

  22. Horn FK, Tornow RP, Junemann AG, Laemmer R, Kremers J (2014) Perimetric measurements with flicker-defined form stimulation in comparison with conventional perimetry and retinal nerve fiber measurements. Invest Ophthalmol Vis Sci 55(4):2317–2323

    Article  PubMed  Google Scholar 

  23. Jonas JB, Gusek GC, Naumann GO (1988) Optic disc morphometry in chronic primary open-angle glaucoma. I Morphometric intrapapillary characteristics. Graefes Arch Clin Exp Ophthalmol 226(6):522–530

    Article  CAS  PubMed  Google Scholar 

  24. Jonas JB, Budde WM, Panda-Jonas S (1999) Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol 43(4):293–320

    Article  CAS  PubMed  Google Scholar 

  25. Hodapp E, Parrish RK, Anderson DR (1993) Clinical decisions in glaucoma. In: CV Mosby (ed) Co., St. Louis, p 52–61

  26. Lauterwald F, Neumann CP, Lenz R, Jünemann AG, Mardin CY, Meyer-Wegener K, Horn FK (2012) The erlangen glaucoma registry: a scientific database for longitudinal analysis of glaucoma. Technical reports / Dep Informatik (ISSN 2191–5008) CS-2011,2:1–9.

  27. Horn FK, Mardin CY, Laemmer R, Baleanu D, Juenemann AM, Kruse FE, Tornow RP (2009) Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT. Invest Ophthalmol Vis Sci 50(5):1971–1977

    Article  PubMed  Google Scholar 

  28. Johnson CA, Cioffi GA, Van Buskirk EM (1999) Frequency doubling technology perimetry using a 24–2 stimulus presentation pattern. Optom Vis Sci 76(8):571–581

    Article  CAS  PubMed  Google Scholar 

  29. Turpin A, McKendrick AM, Johnson CA, Vingrys AJ (2002) Performance of efficient test procedures for frequency-doubling technology perimetry in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 43(3):709–715

    PubMed  Google Scholar 

  30. Quaid PT, Simpson TL, Flanagan JG (2005) Frequency doubling illusion: detection vs. form resolution. Optom Vis Sci 82(1):36–42

    PubMed  Google Scholar 

  31. Goren D, Flanagan JG (2008) Is flicker-defined form (FDF) dependent on the contour? J Vis 8(4):15.1–11

    Article  Google Scholar 

  32. Bland J, Altman D (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  CAS  PubMed  Google Scholar 

  33. Bendschneider D, Tornow RP, Horn FK, Laemmer R, Roessler CW, Juenemann AG, Kruse FE, Mardin CY (2010) Retinal nerve fiber layer thickness in normals measured by spectral domain OCT. J Glaucoma 19(7):475–482

    Article  PubMed  Google Scholar 

  34. Rodgers P, Stapleton G, Flower J, Howse J (2014) Drawing area-proportional euler diagrams representing up to three sets. IEEE Trans Vis Comput Graph 20(1):56–69

    Article  PubMed  Google Scholar 

  35. Oliveros JC (2007) VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html. Accessed 24 Oct 2014

  36. Vergara IA, Norambuena T, Ferrada E, Slater AW, Melo F (2008) StAR: a simple tool for the statistical comparison of ROC curves. BMC Bioinf 9:265

    Article  Google Scholar 

  37. Horn FK, Mardin CY, Bendschneider D, Junemann AG, Adler W, Tornow RP (2011) Frequency doubling technique perimetry and spectral domain optical coherence tomography in patients with early glaucoma. Eye (Lond) 25(1):17–29

    Article  CAS  Google Scholar 

  38. Bowd C, Zangwill LM, Berry CC, Blumenthal EZ, Vasile C, Sanchez-Galeana C, Bosworth CF, Sample PA, Weinreb RN (2001) Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci 42(9):1993–2003

    CAS  PubMed  Google Scholar 

  39. Horn FK, Brenning A, Junemann AG, Lausen B (2007) Glaucoma detection with frequency doubling perimetry and short-wavelength perimetry. J Glaucoma 16(4):363–371

    Article  PubMed  Google Scholar 

  40. Sakata LM, Deleon-Ortega J, Arthur SN, Monheit BE, Girkin CA (2007) Detecting visual function abnormalities using the Swedish interactive threshold algorithm and matrix perimetry in eyes with glaucomatous appearance of the optic disc. Arch Ophthalmol 125(3):340–345

    Article  PubMed  Google Scholar 

  41. Gobel K, Poloschek CM, Erb C, Bach M (2012) Importance of flicker contrast tests in functional glaucoma diagnostics. Ophthalmologe 109(4):319–324

    Article  CAS  PubMed  Google Scholar 

  42. Yoshiyama KK, Johnson CA (1997) Which method of flicker perimetry is most effective for detection of glaucomatous visual field loss? Invest Ophthalmol Vis Sci 38(11):2270–2277

    CAS  PubMed  Google Scholar 

  43. Dannheim F (2013) Flicker and conventional perimetry in comparison with structural changes in glaucoma. Ophthalmologe 110(2):131–140

    Article  CAS  PubMed  Google Scholar 

  44. Mulak M, Szumny D, Sieja-Bujewska A, Kubrak M (2012) Heidelberg edge perimeter employment in glaucoma diagnosis--preliminary report. Adv Clin Exp Med 21(5):665–670

    PubMed  Google Scholar 

  45. May F, Giraud J-M, Francoz M, El Chehab H, Fenolland J-R, Sendon D, Denier C, El Asri F, Dieng M, Renard J-P (2012) Heidelberg Edge Perimetry: evaluation of the Flicker Defined Form test, versus Matrix, in normal and glaucoma subjects. Investig Ophthalmol Vis Sci. 53:E-Abstract 186.

  46. Lamparter J, Schulze A, Schuff AC, Berres M, Pfeiffer N, Hoffmann EM (2011) Learning curve and fatigue effect of flicker defined form perimetry. Am J Ophthalmol 151(6):1057–1064

    Article  PubMed  Google Scholar 

  47. Horn FK, Kremers J, Mardin CY, Junemann AG, Adler W, Tornow RP (2015) Flicker-defined form perimetry in glaucoma patients. Graefes Arch Clin Exp Ophthalmol 253(3):447–455

  48. Prokosch V, Eter N (2014) Correlation between early retinal nerve fiber layer loss and visual field loss determined by three different perimetric strategies: white-on-white, frequency-doubling, or flicker-defined form perimetry. Graefes Arch Clin Exp Ophthalmol 252(10):1599–1606

    Article  PubMed  Google Scholar 

  49. Hong S, Ahn H, Ha SJ, Yeom HY, Seong GJ, Hong YJ (2007) Early glaucoma detection using the Humphrey Matrix Perimeter, GDx VCC, Stratus OCT, and retinal nerve fiber layer photography. Ophthalmology 114(2):210–215

    Article  PubMed  Google Scholar 

  50. Reznicek L, Lamparter J, Vogel M, Kampik A, Hirneiss C (2015) Flicker defined form perimetry in glaucoma suspects with normal achromatic visual fields. Curr Eye Res 40(7):683–689

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Folkert K. Horn.

Ethics declarations

Funding

No financial support was received for the study. The Matrix and the HEP instruments were given as loan from the manufacturers for the time of the study. The manufacturers had no role in the design or conduct of this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horn, F.K., Scharch, V., Mardin, C.Y. et al. Comparison of frequency doubling and flicker defined form perimetry in early glaucoma. Graefes Arch Clin Exp Ophthalmol 254, 937–946 (2016). https://doi.org/10.1007/s00417-016-3286-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-016-3286-1

Keywords

Navigation