Skip to main content

Advertisement

Log in

Flicker-defined form perimetry in glaucoma patients

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To assess the potential of flicker-defined form (FDF) perimetry to detect functional loss in patient groups with beginning glaucoma, and to evaluate the dynamic range of the FDF stimulus in individual patients and at individual test positions.

Methods

FDF perimetry and standard automated perimetry (SAP) were performed at identical test locations (adapted G1 protocol) in 60 healthy subjects and 111 glaucoma patients. All patients showed glaucomatous optic disc appearance. Grouping within the glaucoma cohort was based on SAP-performance: 33 “preperimetric” open-angle glaucoma (OAG) patients, 28 “borderline” OAG (focal defects and SAP-mean defect (MD) <2 dB), 33 “early” OAG (SAP-MD < 5 dB), 17 “advanced” OAG. All participants were experienced in psychophysical and perimetric tests. Defect values and the areas under receiver operating characteristic curves (ROC) in patient groups were statistically compared.

Results

The values of FDF-MD in the preperimetric, borderline, and early OAG group were 2.7 ± 3.4 dB, 5.5 ± 2.6 dB, and 8.5 ± 3.4 dB respectively (all significantly above normal). The percentage of patients exceeding normal FDF-MD was 27.3 %, 60.7 %, and 87.9 % respectively. The age-adjusted FDF-mean defect (MD) of the G1X-protocol was not significantly correlated with refractive error, lens opacity, pupil size, or gender. Occurrence of ceiling effects (inability to detect targets at highest contrast) showed a high correlation with visual field losses (R = 0.72, p < 0.001). Local analysis indicates that SAP losses exceeding 5 dB could not be distinguished with the FDF technique.

Conclusion

The FDF stimulus was able to detect beginning glaucoma damage. Patients with SAP-MD values exceeding 5 dB should be monitored with conventional perimetry because of its larger dynamic range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Salvetat ML, Zeppieri M, Tosoni C, Parisi L, Brusini P (2010) Non-conventional perimetric methods in the detection of early glaucomatous functional damage. Eye 24(5):835–842. doi:10.1038/eye.2009.216

    Article  CAS  PubMed  Google Scholar 

  2. Tyler CW (1981) Specific deficits of flicker sensitivity in glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 20(2):204–212

    CAS  PubMed  Google Scholar 

  3. Lachenmayr BJ, Drance SM, Douglas GR, Mikelberg FS (1991) Light-sense, flicker and resolution perimetry in glaucoma: a comparative study. Graefes Arch Clin Exp Ophthalmol 229(3):246–251

    Article  CAS  PubMed  Google Scholar 

  4. Gobel K, Poloschek CM, Erb C, Bach M (2012) Importance of flicker contrast tests in functional glaucoma diagnostics. Ophthalmologe 109(4):319–324. doi:10.1007/s00347-012-2544-9

    Article  CAS  PubMed  Google Scholar 

  5. Horn FK, Korth M, Martus P (1994) Quick full-field flicker test in glaucoma diagnosis: correlations with perimetry and papillometry. J Glaucoma 3(3):206–213

    Article  CAS  PubMed  Google Scholar 

  6. Sample PA, Medeiros FA, Racette L, Pascual JP, Boden C, Zangwill LM, Bowd C, Weinreb RN (2006) Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study. Invest Ophthalmol Vis Sci 47(8):3381–3389. doi:10.1167/iovs. 05-1546

    Article  PubMed  Google Scholar 

  7. Anderson AJ, Johnson CA (2003) Frequency-doubling technology perimetry. Ophthalmol Clin N Am 16(2):213–225

    Article  Google Scholar 

  8. Ferreras A, Polo V, Larrosa JM, Pablo LE, Pajarin AB, Pueyo V, Honrubia FM (2007) Can frequency-doubling technology and short-wavelength automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma? J Glaucoma 16(4):372–383

    Article  PubMed  Google Scholar 

  9. Nomoto H, Matsumoto C, Takada S, Hashimoto S, Arimura E, Okuyama S, Shimomura Y (2009) Detectability of glaucomatous changes using SAP, FDT, flicker perimetry, and OCT. J Glaucoma 18(2):165–171. doi:10.1097/IJG.0b013e318179f7ca

    Article  PubMed  Google Scholar 

  10. Matsumoto C, Takada S, Okuyama S, Arimura E, Hashimoto S, Shimomura Y (2006) Automated flicker perimetry in glaucoma using Octopus 311: a comparative study with the Humphrey Matrix. Acta Ophthalmol Scand 84(2):210–215. doi:10.1111/j.1600-0420.2005.00588.x

    Article  PubMed  Google Scholar 

  11. Yoshiyama KK, Johnson CA (1997) Which method of flicker perimetry is most effective for detection of glaucomatous visual field loss? Invest Ophthalmol Vis Sci 38(11):2270–2277

    CAS  PubMed  Google Scholar 

  12. Zeppieri M, Brusini P, Parisi L, Johnson CA, Sampaolesi R, Salvetat ML (2010) Pulsar perimetry in the diagnosis of early glaucoma. Am J Ophthalmol 149(1):102–112. doi:10.1016/j.ajo.2009.07.020

    Article  PubMed  Google Scholar 

  13. Quaid PT, Flanagan JG (2005) Defining the limits of flicker defined form: effect of stimulus size, eccentricity and number of random dots. Vis Res 45(8):1075–1084. doi:10.1016/j.visres.2004.10.013

    Article  CAS  PubMed  Google Scholar 

  14. Lamparter J, Russell RA, Schulze A, Schuff AC, Pfeiffer N, Hoffmann EM (2012) Structure-function relationship between FDF, FDT, SAP, and scanning laser ophthalmoscopy in glaucoma patients. Invest Ophthalmol Vis Sci 53(12):7553–7559. doi:10.1167/iovs. 12-10892

    Article  CAS  PubMed  Google Scholar 

  15. Horn FK, Tornow RP, Juenemann AG, Laemmer R, Kremers J (2014) Perimetric measurements with flicker defined form stimulation in comparison to conventional perimetry and retinal nerve fiber measurements. Invest Ophthalmol Vis Sci 55(4):2317–2323. doi:10.1167/iovs. 13-12469

    Article  PubMed  Google Scholar 

  16. Lauterwald F, Neumann CP, Lenz R, Jünemann AG, Mardin CY, Meyer-Wegener K, Horn FK (2012) The Erlangen Glaucoma Registry: a scientific database for longitudinal analysis of glaucoma. Technical reports / Dep Informatik (ISSN 2191-5008) CS-2011,2:1-9

  17. Horn FK, Junemann AG, Korth M (2001) Two methods of lens opacity measurements in glaucomas. Doc Ophthalmol Adv Ophthalmol 103(2):105–117

    Article  CAS  Google Scholar 

  18. Jonas JB, Budde WM, Panda-Jonas S (1999) Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol 43(4):293–320

    Article  CAS  PubMed  Google Scholar 

  19. Jonas JB, Gusek GC, Naumann GO (1988) Optic disc morphometry in chronic primary open-angle glaucoma. I. Morphometric intrapapillary characteristics. Graefes Arch Clin Exp Ophthalmol 226(6):522–530

    Article  CAS  PubMed  Google Scholar 

  20. Mills RP, Budenz DL, Lee PP, Noecker RJ, Walt JG, Siegartel LR, Evans SJ, Doyle JJ (2006) Categorizing the stage of glaucoma from pre-diagnosis to end-stage disease. Am J Ophthalmol 141(1):24–30. doi:10.1016/j.ajo.2005.07.044

    Article  PubMed  Google Scholar 

  21. Hodapp E, Parrish RK, Anderson DR (1993) Clinical decisions in glaucoma. Mosby, St. Louis, pp 52–61

    Google Scholar 

  22. Dannheim F (2013) Flicker and conventional perimetry in comparison with structural changes in glaucoma. Ophthalmologe 110(2):131–140. doi:10.1007/s00347-012-2692-y

    Article  CAS  PubMed  Google Scholar 

  23. Mulak M, Szumny D, Sieja-Bujewska A, Kubrak M (2012) Heidelberg edge perimeter employment in glaucoma diagnosis—preliminary report. Adv Clin Exp Med 21(5):665–670

    PubMed  Google Scholar 

  24. Quaid PT, Simpson TL, Flanagan JG (2005) Frequency doubling illusion: detection vs form resolution. Optom Vis Sci 82(1):36–42

    PubMed  Google Scholar 

  25. Goren D, Flanagan JG (2008) Is flicker-defined form (FDF) dependent on the contour? J Vis 8(4):15–11. doi:10.1167/8.4.15

    Article  PubMed  Google Scholar 

  26. Vergara IA, Norambuena T, Ferrada E, Slater AW, Melo F (2008) StAR: a simple tool for the statistical comparison of ROC curves. BMC Bioinform 9:265. doi:10.1186/1471-2105-9-265

    Article  Google Scholar 

  27. Matsumoto C, Okuyama S, Iwagaki A, Otsuki T, Otori T (1997) The influence of target blur on perimetric threshold values in automated light-sensitive perimetry and flicker perimetry. In: Wall M, Heiji A (eds) Perimetry update 1996/1997. Kugler, Amsterdam, pp 191–200

    Google Scholar 

  28. Lachenmayr BJ, Kojetinsky S, Ostermaier N, Angstwurm K, Vivell PM, Schaumberger M (1994) The different effects of aging on normal sensitivity in flicker and light-sense perimetry. Invest Ophthalmol Vis Sci 35(6):2741–2748

    CAS  PubMed  Google Scholar 

  29. Marvasti AH, Tatham AJ, Weinreb RN, Medeiros FA (2013) Heidelberg edge perimetry for the detection of early glaucomatous damage: a case report. Case Rep Ophthalmol 4(3):144–150. doi:10.1159/000355102

    Article  PubMed Central  PubMed  Google Scholar 

  30. May F, Giraud J-M, Francoz M, El Chehab H, Fenolland J-R, Sendon D, Denier C, El Asri F, Dieng M, Renard J-P (2012) Heidelberg Edge Perimetry: evaluation of the Flicker Defined Form test, versus Matrix, in normal and glaucoma subjects. Invest Ophthalmol Vis Sci 53(6):186

    Google Scholar 

  31. Lamparter J, Schulze A, Schuff AC, Berres M, Pfeiffer N, Hoffmann EM (2011) Learning curve and fatigue effect of flicker defined form perimetry. Am J Ophthalmol 151(6):1057–1064. doi:10.1016/j.ajo.2010.11.031

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Folkert K. Horn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horn, F.K., Kremers, J., Mardin, C.Y. et al. Flicker-defined form perimetry in glaucoma patients. Graefes Arch Clin Exp Ophthalmol 253, 447–455 (2015). https://doi.org/10.1007/s00417-014-2887-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2887-9

Keywords

Navigation