Skip to main content

Advertisement

Log in

Geldanamycin treatment reduces neovascularization in a mouse model of retinopathy of prematurity

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The benzoquinoid antibiotic 17-allylaminogeldanamycin (17-AAG) inhibits the Ras/Raf/MEK and PI3-Kinase signaling pathways and down-regulates vascular endothelial factor expression. Here we use a mouse model of oxygen-induced retinopathy to investigate the effect of 17-AAG on retinal neovascularization and vascular recovery.

Material and methods

C57BL/6 mice were exposed to 75% oxygen from postnatal day 7 (P7) to P12 and recovered in room air thereafter. Beginning with P12 mice were treated for 5 days by daily IP injection of 17-AAG (12.5 mg/kg body weight) micro dispersed in an emulsion of 4% Lipoid EPC, 5% sucrose, and 0.9% NaCl or Wortmannin (100 μg/kg body weight). On P17, the retinal vascular and avascular area, neovascular blood vessel tufts, and main vessel tortuosity were quantified after perfusion of the mice with FITC-Concanavalin A. The mRNA levels of VEGF, angiopoietin 1 and 2 were quantified by real-time RT-PCR.

Results

After 17-AAG treatment, a reduction of the vascular area was measured from 37.8±5.2% to 30.8±5.7% (P=0.005), and an increase of the avascular area from 10.8±5.6% to 20.3±6.6% (P=0.001). No alteration of the vascular pattern, the number of blood vessel tufts and the main vessel tortuosity was achieved by treatment with the PI-3 kinase inhibitor Wortmannin. After treatment with 17-AAG, the numbers of tufts (127.9±33.2) were different from the controls (173.7±55.2, P=0.035), but not the main vessel tortuosity. No significant change in VEGF and angiopoietin 1 mRNA expression could be achieved with either of the treatments. Wortmannin treatment also did not change the angiopoietin 2 mRNA level, whereas the level was reduced in 17-AAG treated mice retina from 436-fold (± 64) to 200-fold (±55) (P=0.035).

Conclusion

An IP injection of 17-AAG is able to reduce angioproliferative retinopathy in a mouse model for oxygen-induced retinopathy. Our data indicate that the mechanism does not involve a direct or indirect reduction of the VEGF mRNA level, but acts downstream of the VEGF pathway. Thus, 17-AAG probably does not work by PI-3 kinase inhibition but via the Ras/Raf/MEK pathway. These data underline the potential utility of tyrosine kinase inhibitors in hypoxia induced neovascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

17-AAG:

17-allylaminogeldanamycin

BW:

body weight

ANG1, ANG2:

angiopoietin 1 and 2

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

References

  1. Aiello LP, Northrup JM, Keyt BA, Takagi H (1995) Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol 113:1538–1544

    PubMed  CAS  Google Scholar 

  2. Alon T, Hemo I, Itin A, Pe’er J (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1:1024–1028

    Article  PubMed  CAS  Google Scholar 

  3. Asahara T, Chen D, Takahashi T, Fujikawa K (1998) Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83:233–240

    PubMed  CAS  Google Scholar 

  4. Ashton N (1966) Oxygen and the growth and development of retinal vessels. In vivo and in vitro studies. The XX Francis I. Proctor Lecture. Am J Ophthalmol 62:412–435

    PubMed  CAS  Google Scholar 

  5. Basso AD, Solit DB, Munster PN, Rosen N (2002) Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene 21:1159–1166

    Article  PubMed  CAS  Google Scholar 

  6. Brouet A, Sonveaux P, Dessy C, Moniotte S (2001) Hsp90 and caveolin are key targets for the proangiogenic nitric oxide-mediated effects of statins. Circ Res 89:866–873

    PubMed  CAS  Google Scholar 

  7. Chen JX, Lawrence ML, Cunningham G, Christman BW (2004) HSP90 and Akt modulate Ang-1-induced angiogenesis via NO in coronary artery endothelium. J Appl Physiol 96:612–620

    Article  PubMed  CAS  Google Scholar 

  8. Egorin MJ, Zuhowski EG, Rosen DM, Sentz DL (2001) Plasma pharmacokinetics and tissue distribution of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) in CD2F1 mice1. Cancer Chemother Pharmacol 47:291–302

    Article  PubMed  CAS  Google Scholar 

  9. Fruttiger M (2002) Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis. Invest Ophthalmol Vis Sci 43:522–527

    PubMed  Google Scholar 

  10. Glaze ER, Lambert AL, Smith AC, Page JG (2005) Preclinical toxicity of a geldanamycin analog, 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), in rats and dogs: potential clinical relevance. Cancer Chemother Pharmacol 56:637–647

    Article  PubMed  CAS  Google Scholar 

  11. Gradin K, McGuire J, Wenger RH, Kvietikova I (1996) Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol Cell Biol 16:5221–5231

    PubMed  CAS  Google Scholar 

  12. Hackett SF, Ozaki H, Strauss RW, Wahlin K (2000) Angiopoietin 2 expression in the retina: upregulation during physiologic and pathologic neovascularization. J Cell Physiol 184:275–284

    Article  PubMed  CAS  Google Scholar 

  13. Hogenesch JB, Chan WK, Jackiw VH, Brown RC (1997) Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem 272:8581–8593

    Article  PubMed  CAS  Google Scholar 

  14. Hur E, Kim HH, Choi SM, Kim JH (2002) Reduction of hypoxia-induced transcription through the repression of hypoxia-inducible factor-1alpha/aryl hydrocarbon receptor nuclear translocator DNA binding by the 90-kDa heat-shock protein inhibitor radicicol. Mol Pharmacol 62:975–982

    Article  PubMed  CAS  Google Scholar 

  15. Ishida S, Yamashiro K, Usui T, Kaji Y (2003) Leukocytes mediate retinal vascular remodeling during development and vaso-obliteration in disease. Nat Med 9:781–788

    Article  PubMed  CAS  Google Scholar 

  16. Joussen AM, Poulaki V, Qin W, Kirchhof B (2002) Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. Am J Pathol 160:501–509

    PubMed  CAS  Google Scholar 

  17. Katschinski DM, Le L, Heinrich D, Wagner KF (2002) Heat induction of the unphosphorylated form of hypoxia-inducible factor-1alpha is dependent on heat shock protein-90 activity. J Biol Chem 277:9262–9267

    Article  PubMed  CAS  Google Scholar 

  18. Kwak YG, Song CH, Yi HK, Hwang PH (2003) Involvement of PTEN in airway hyperresponsiveness and inflammation in bronchial asthma. J Clin Invest 111:1083–1092

    Article  PubMed  CAS  Google Scholar 

  19. Mabjeesh NJ, Post DE, Willard MT, Kaur B (2002) Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells. Cancer Res 62:2478–2482

    PubMed  CAS  Google Scholar 

  20. Maisonpierre PC, Suri C, Jones PF, Bartunkova S (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  PubMed  CAS  Google Scholar 

  21. Minet E, Mottet D, Michel G, Roland I (1999) Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS Lett 460:251–256

    Article  PubMed  CAS  Google Scholar 

  22. Murohara T, Asahara T, Silver M, Bauters C (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101:2567–2578

    PubMed  CAS  Google Scholar 

  23. Nguyen DM, Lorang D, Chen GA, Stewart JH (2001) Enhancement of paclitaxel-mediated cytotoxicity in lung cancer cells by 17-allylamino geldanamycin: in vitro and in vivo analysis. Ann Thorac Surg 72:371–378

    Article  PubMed  CAS  Google Scholar 

  24. Ochel HJ, Eichhorn K, Gademann G (2001) Geldanamycin: the prototype of a class of antitumor drugs targeting the heat shock protein 90 family of molecular chaperones. Cell Stress Chaperones 6:105–112

    Article  PubMed  CAS  Google Scholar 

  25. Penn JS, Tolman BL, Lowery LA (1993) Variable oxygen exposure causes preretinal neovascularization in the newborn rat. Invest Ophthalmol Vis Sci 34:576–585

    PubMed  CAS  Google Scholar 

  26. Pfosser A, Thalgott M, Buttner K, Brouet A (2005) Liposomal Hsp90 cDNA induces neovascularization via nitric oxide in chronic ischemia. Cardiovasc Res 65:728–736

    Article  PubMed  CAS  Google Scholar 

  27. Pichiule P, Chavez JC, LaManna JC (2004) Hypoxic regulation of angiopoietin-2 expression in endothelial cells. J Biol Chem 279:12171–12180

    Article  PubMed  CAS  Google Scholar 

  28. Pierce EA, Avery RL, Foley ED, Aiello LP (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci 92:905–909

    Article  PubMed  CAS  Google Scholar 

  29. Robert J (2003) Evolution of heat shock protein and immunity. Dev Comp Immunol 27:449–464

    Article  PubMed  CAS  Google Scholar 

  30. Sarlos S, Rizkalla B, Moravski CJ, Cao Z (2003) Retinal angiogenesis is mediated by an interaction between the angiotensin type 2 receptor, VEGF, and angiopoietin. Am J Pathol 163:879–887

    PubMed  CAS  Google Scholar 

  31. Sausville EA, Tomaszewski JE, Ivy P (2003) Clinical development of 17-allylamino, 17-demethoxygeldanamycin. Curr Cancer Drug Targets 3:377–383

    Article  PubMed  CAS  Google Scholar 

  32. Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578

    Article  PubMed  CAS  Google Scholar 

  33. Shen BQ, Lee DY, Zioncheck TF (1999) Vascular endothelial growth factor governs endothelial nitric-oxide synthase expression via a KDR/Flk-1 receptor and a protein kinase C signaling pathway. J Biol Chem 274:33057–33063

    Article  PubMed  CAS  Google Scholar 

  34. Silvestre JS, Tamarat R, Ebrahimian TG, Le Roux A (2003) Vascular endothelial growth factor-b promotes in vivo angiogenesis. Circ Res 93:114–123

    Article  PubMed  CAS  Google Scholar 

  35. Simpson DA, Feeney S, Boyle C, Stitt AW (2000) Retinal VEGF mRNA measured by SYBR green I fluorescence: a versatile approach to quantitative PCR. Mol Vis 6:178–183

    PubMed  CAS  Google Scholar 

  36. Smith LE, Wesolowski E, McLellan A, Kostyk SK (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35:101–111

    PubMed  CAS  Google Scholar 

  37. Sun J, Liao JK (2004) Induction of angiogenesis by heat shock protein 90 mediated by protein kinase Akt and endothelial nitric oxide synthase. Arterioscler Thromb Vasc Biol 24:2238–2244

    Article  PubMed  CAS  Google Scholar 

  38. Wenger RH (2002) Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 16:1151–1162

    Article  PubMed  CAS  Google Scholar 

  39. Zhang H, Burrows F (2004) Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med 82:488–499

    Google Scholar 

  40. Zhang L, Yang N, Park JW, Katsaros D (2003) Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res 63:3403–3412

    PubMed  CAS  Google Scholar 

  41. Ziche M, Morbidelli L, Masini E, Amerini S (1994) Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 94:2036–2044

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Claudia Gavranic and Frank Lacina for excellent technical assistance.

Grant information:This study was funded by the Center for Molecular Medicine (CMMC), Cologne; Deutsche Forschungsgemeinschaft DFG Jo 324/6-2; Kämpgen-Stiftung, Cologne; and the Faculty of Medicine of the University of Cologne (Köln Fortune). All authors declare no duality of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Kociok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kociok, N., Krohne, T.U., Poulaki, V. et al. Geldanamycin treatment reduces neovascularization in a mouse model of retinopathy of prematurity. Graefe's Arch Clin Exp Ophthalmol 245, 258–266 (2007). https://doi.org/10.1007/s00417-006-0355-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-006-0355-x

Keywords

Navigation