Skip to main content

Advertisement

Log in

Longitudinal diffusion tensor imaging changes in early Parkinson’s disease: ICICLE-PD study

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Objective

To investigate whether white matter microstructural changes can be used as a predictor of worsening of motor features or cognitive decline in patients with Parkinson’s disease and verify whether white matter microstructural longitudinal changes differ between patients with Parkinson’s disease with normal cognition and those with mild cognitive impairment.

Methods

We enrolled 120 newly diagnosed patients with early stage Parkinson’s disease (27 with mild cognitive impairment and 93 with normal cognition) along with 48 controls. Participants were part of the incidence of cognitive impairment in cohorts with longitudinal evaluation in Parkinson’s disease study and were assessed at baseline and 18 months later with cognitive, motor tests and diffusion tensor imaging. The relationships between fractional anisotropy and mean diffusivity with disease status, cognitive and motor function were investigated.

Results

At baseline, patients with early stage Parkinson’s disease had significantly higher widespread mean diffusivity relative to controls, regardless of cognitive status. In patients with Parkinson’s disease/mild cognitive impairment, higher mean diffusivity was significantly correlated with lower attention and executive function scores. At follow-up frontal mean diffusivity increased significantly when comparing patients with Parkinson’s disease/mild cognitive impairment with those with normal cognition. Baseline mean diffusivity was a significant predictor of worsening of motor features in Parkinson’s disease.

Conclusions

Mean diffusivity represents an important correlate of cognitive function and predictor of motor impairment in Parkinson’s disease: DTI is potentially a useful tool in stratification of patients into clinical trials and to monitor the impact of treatment on motor function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hobson P, Meara J (2004) Risk and incidence of dementia in a cohort of older subjects with Parkinson’s disease in the United Kingdom. Mov Disord 19:1043–1049

    Article  PubMed  Google Scholar 

  2. Hely MA, Reid WG, Adena MA, Halliday GM, Morris JG (2008) The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord 23(6):837–844. https://doi.org/10.1002/mds.21956

    Article  PubMed  Google Scholar 

  3. Foltynie T, Brayne CE, Robbins TW, Barker RA (2004) The cognitive ability of an incident cohort of Parkinson’s patients in the UK. The CamPaIGN study. Brain 127(Pt 3):550–560. https://doi.org/10.1093/brain/awh067

    Article  PubMed  Google Scholar 

  4. Janvin CC, Larsen JP, Aarsland D, Hugdahl K (2006) Subtypes of mild cognitive impairment in Parkinson’s disease: progression to dementia. Mov Disord 21(9):1343–1349. https://doi.org/10.1002/mds.20974

    Article  PubMed  Google Scholar 

  5. Bohnen NI, Albin RL (2011) White matter lesions in Parkinson disease. Nat Rev Neurol 7(4):229–236. https://doi.org/10.1038/nrneurol.2011.21

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee SJ, Kim JS, Yoo JY, Song IU, Kim BS, Jung SL, Yang DW, Kim YI, Jeong DS, Lee KS (2010) Influence of white matter hyperintensities on the cognition of patients with Parkinson disease. Alzheimer Dis Assoc Disord 24(3):227–233. https://doi.org/10.1097/WAD.0b013e3181d71a13

    Article  PubMed  Google Scholar 

  7. Rae CL, Correia MM, Altena E, Hughes LE, Barker RA, Rowe JB (2012) White matter pathology in Parkinson’s disease: the effect of imaging protocol differences and relevance to executive function. Neuroimage 62(3):1675–1684. https://doi.org/10.1016/j.neuroimage.2012.06.012

    Article  PubMed  PubMed Central  Google Scholar 

  8. Melzer TR, Watts R, MacAskill MR, Pitcher TL, Livingston L, Keenan RJ, Dalrymple-Alford JC, Anderson TJ (2013) White matter microstructure deteriorates across cognitive stages in Parkinson disease. Neurology 80(20):1841–1849. https://doi.org/10.1212/WNL.0b013e3182929f62

    Article  PubMed  CAS  Google Scholar 

  9. Halliday GM, Leverenz JB, Schneider JS, Adler CH (2014) The neurobiological basis of cognitive impairment in Parkinson’s disease. Mov Disord 29(5):634–650. https://doi.org/10.1002/mds.25857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Duncan GW, Firbank MJ, Yarnall AJ, Khoo TK, Brooks DJ, Barker RA, Burn DJ, O’Brien JT (2016) Gray and white matter imaging: a biomarker for cognitive impairment in early Parkinson’s disease? Mov Disord 31(1):103–110. https://doi.org/10.1002/mds.26312

    Article  PubMed  Google Scholar 

  11. Yarnall AJ, Breen DP, Duncan GW, Khoo TK, Coleman SY, Firbank MJ, Nombela C, Winder-Rhodes S, Evans JR, Rowe JB, Mollenhauer B, Kruse N, Hudson G, Chinnery PF, O’Brien JT, Robbins TW, Wesnes K, Brooks DJ, Barker RA, Burn DJ, Group I-PS (2014) Characterizing mild cognitive impairment in incident Parkinson disease: the ICICLE-PD study. Neurology 82(4):308–316. https://doi.org/10.1212/WNL.0000000000000066

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gibb WRG, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51:745–752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, Broe GA, Cummings J, Dickson DW, Gauthier S, Goldman J, Goetz C, Korczyn A, Lees A, Levy R, Litvan I, McKeith I, Olanow W, Poewe W, Quinn N, Sampaio C, Tolosa E, Dubois B (2007) Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord 22(12):1689–1707. https://doi.org/10.1002/mds.21507 (quiz 1837).

    Article  PubMed  Google Scholar 

  14. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  PubMed  CAS  Google Scholar 

  15. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, van Hilten JJ, LaPelle N, Movement Disorder Society URTF (2008) Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23(15):2129–2170. https://doi.org/10.1002/mds.22340

    Article  PubMed  Google Scholar 

  16. Hoehn MM, Yahr MD (2001) Parkinsonism: onset, progression, and mortality. 1967. Neurology 57(10 Suppl 3):S11–S26

    PubMed  CAS  Google Scholar 

  17. Lawson RA, Yarnall AJ, Duncan GW, Khoo TK, Breen DP, Barker RA, Collerton D, Taylor JP, Burn DJ (2014) Severity of mild cognitive impairment in early Parkinson’s disease contributes to poorer quality of life. Parkinsonism Relat Disord 20(10):1071–1075. https://doi.org/10.1016/j.parkreldis.2014.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mak E, Su L, Williams GB, Firbank MJ, Lawson RA, Yarnall AJ, Duncan GW, Owen AM, Khoo TK, Brooks DJ, Rowe JB, Barker RA, Burn DJ, O’Brien JT (2015) Baseline and longitudinal grey matter changes in newly diagnosed Parkinson’s disease: ICICLE-PD study. Brain 138(Pt 10):2974–2986. https://doi.org/10.1093/brain/awv211

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stebbins GT, Goetz CG, Burn DJ, Jankovic J, Khoo TK, Tilley BC (2013) How to identify tremor dominant and postural instability/gait difficulty groups with the movement disorder society unified Parkinson’s disease rating scale: comparison with the unified Parkinson’s disease rating scale. Mov Disord 28(5):668–670. https://doi.org/10.1002/mds.25383

    Article  PubMed  Google Scholar 

  20. Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25(15):2649–2653. https://doi.org/10.1002/mds.23429

    Article  PubMed  Google Scholar 

  21. Litvan I, Goldman JG, Troster AI, Schmand BA, Weintraub D, Petersen RC, Mollenhauer B, Adler CH, Marder K, Williams-Gray CH, Aarsland D, Kulisevsky J, Rodriguez-Oroz MC, Burn DJ, Barker RA, Emre M (2012) Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov Disord 27(3):349–356. https://doi.org/10.1002/mds.24893

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lawson RA, Yarnall AJ, Duncan GW, Breen DP, Khoo TK, Williams-Gray CH, Barker RA, Burn DJ, group I-Ps (2017) Stability of mild cognitive impairment in newly diagnosed Parkinson’s disease. J Neurol Neurosurg Psychiatry 88(8):648–652. https://doi.org/10.1136/jnnp-2016-315099

    Article  PubMed  PubMed Central  Google Scholar 

  23. Goldman JG, Holden S, Bernard B, Ouyang B, Goetz CG, Stebbins GT (2013) Defining optimal cutoff scores for cognitive impairment using Movement Disorder Society Task Force criteria for mild cognitive impairment in Parkinson’s disease. Mov Disord 28(14):1972–1979. https://doi.org/10.1002/mds.25655

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pereira JB, Svenningsson P, Weintraub D, Bronnick K, Lebedev A, Westman E, Aarsland D (2014) Initial cognitive decline is associated with cortical thinning in early Parkinson disease. Neurology 82(22):2017–2025. https://doi.org/10.1212/WNL.0000000000000483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4):1487–1505. https://doi.org/10.1016/j.neuroimage.2006.02.024

    Article  PubMed  Google Scholar 

  26. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219. https://doi.org/10.1016/j.neuroimage.2004.07.051

    Article  PubMed  Google Scholar 

  27. Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE (2014) Permutation inference for the general linear model. Neuroimage 92:381–397. https://doi.org/10.1016/j.neuroimage.2014.01.060

    Article  PubMed  PubMed Central  Google Scholar 

  28. Firbank MJ, Minett T, O’Brien JT (2003) Changes in DWI and MRS associated with white matter hyperintensities in elderly subjects. Neurology 61(7):950–954

    Article  PubMed  CAS  Google Scholar 

  29. Simons JS, Spiers HJ (2003) Prefrontal and medial temporal lobe interactions in long-term memory. Nat Rev Neurosci 4(8):637–648. https://doi.org/10.1038/nrn1178

    Article  PubMed  CAS  Google Scholar 

  30. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271

    Article  PubMed  CAS  Google Scholar 

  31. Bonelli RM, Cummings JL (2007) Frontal-subcortical circuitry and behavior. Dialogues Clin Neurosci 9(2):141–151

    PubMed  PubMed Central  Google Scholar 

  32. Ye Z, Altena E, Nombela C, Housden CR, Maxwell H, Rittman T, Huddleston C, Rae CL, Regenthal R, Sahakian BJ, Barker RA, Robbins TW, Rowe JB (2015) Improving response inhibition in Parkinson’s disease with atomoxetine. Biol Psychiatry 77(8):740–748. https://doi.org/10.1016/j.biopsych.2014.01.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Atkinson-Clement C, Pinto S, Eusebio A, Coulon O (2017) Diffusion tensor imaging in Parkinson’s disease: review and meta-analysis. Neuroimage Clin 16:98–110. https://doi.org/10.1016/j.nicl.2017.07.011

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ofori E, Pasternak O, Planetta PJ, Li H, Burciu RG, Snyder AF, Lai S, Okun MS, Vaillancourt DE (2015) Longitudinal changes in free-water within the substantia nigra of Parkinson’s disease. Brain 138(Pt 8):2322–2331. https://doi.org/10.1093/brain/awv136

    Article  PubMed  PubMed Central  Google Scholar 

  35. Modrego PJ, Fayed N, Artal J, Olmos S (2011) Correlation of findings in advanced MRI techniques with global severity scales in patients with Parkinson disease. Acad Radiol 18(2):235–241. https://doi.org/10.1016/j.acra.2010.09.022

    Article  PubMed  Google Scholar 

  36. Zhan W, Kang GA, Glass GA, Zhang Y, Shirley C, Millin R, Possin KL, Nezamzadeh M, Weiner MW, Marks WJ Jr, Schuff N (2012) Regional alterations of brain microstructure in Parkinson’s disease using diffusion tensor imaging. Mov Disord 27(1):90–97. https://doi.org/10.1002/mds.23917

    Article  PubMed  Google Scholar 

  37. Nigro S, Riccelli R, Passamonti L, Arabia G, Morelli M, Nistico R, Novellino F, Salsone M, Barbagallo G, Quattrone A (2016) Characterizing structural neural networks in de novo Parkinson disease patients using diffusion tensor imaging. Hum Brain Mapp 37(12):4500–4510. https://doi.org/10.1002/hbm.23324

    Article  PubMed  CAS  Google Scholar 

  38. Lo RY, Tanner CM, Albers KB, Leimpeter AD, Fross RD, Bernstein AL, McGuire V, Quesenberry CP, Nelson LM, Van Den Eeden SK (2009) Clinical features in early Parkinson disease and survival. Arch Neurol 66(11):1353–1358. https://doi.org/10.1001/archneurol.2009.221

    Article  PubMed  Google Scholar 

  39. Vervoort G, Leunissen I, Firbank M, Heremans E, Nackaerts E, Vandenberghe W, Nieuwboer A (2016) Structural brain alterations in motor subtypes of Parkinson’s Disease: evidence from probabilistic tractography and shape analysis. PLoS One 11(6):e0157743. https://doi.org/10.1371/journal.pone.0157743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hall JM, Ehgoetz Martens KA, Walton CC, O’Callaghan C, Keller PE, Lewis SJ, Moustafa AA (2016) Diffusion alterations associated with Parkinson’s disease symptomatology: A review of the literature. Parkinsonism Relat Disord 33:12–26. https://doi.org/10.1016/j.parkreldis.2016.09.026

    Article  PubMed  Google Scholar 

  41. Schwarz CG, Reid RI, Gunter JL, Senjem ML, Przybelski SA, Zuk SM, Whitwell JL, Vemuri P, Josephs KA, Kantarci K, Thompson PM, Petersen RC, Jack CR Jr., Alzheimer’s Disease Neuroimaging I (2014) Improved DTI registration allows voxel-based analysis that outperforms tract-based spatial statistics. Neuroimage 94:65–78. https://doi.org/10.1016/j.neuroimage.2014.03.026

    Article  PubMed  PubMed Central  Google Scholar 

  42. Melzer TR, Myall DJ, MacAskill MR, Pitcher TL, Livingston L, Watts R, Keenan RJ, Dalrymple-Alford JC, Anderson TJ (2015) Tracking Parkinson’s disease over one year with multimodal magnetic resonance imaging in a group of older patients with moderate disease. PLoS One 10(12):e0143923. https://doi.org/10.1371/journal.pone.0143923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Rossi ME, Ruottinen H, Saunamaki T, Elovaara I, Dastidar P (2014) Imaging brain iron and diffusion patterns: a follow-up study of Parkinson’s disease in the initial stages. Acad Radiol 21(1):64–71. https://doi.org/10.1016/j.acra.2013.09.018

    Article  PubMed  Google Scholar 

  44. Fernando MS, O’Brien JT, Perry RH, English P, Forster G, McMeekin W, Slade JY, Golkhar A, Matthews FE, Barber R, Kalaria RN, Ince PG (2004) Comparison of the pathology of cerebral white matter with post-mortem magnetic resonance imaging (MRI) in the elderly brain. Neuropathol Appl Neurobiol 30(4):385–395. https://doi.org/10.1111/j.1365-2990.2004.00550.x

    Article  PubMed  CAS  Google Scholar 

  45. Fernando MS, Ince PG (2004) Vascular pathologies and cognition in a population-based cohort of elderly people. J Neurol Sci 226(1–2):13–17. https://doi.org/10.1016/j.jns.2004.09.004

    Article  PubMed  Google Scholar 

  46. Melzer TR (2013) The evolution of diffusion tensor imaging in Parkinson’s disease research. Mov Disord 28(9):1316. https://doi.org/10.1002/mds.25566

    Article  PubMed  Google Scholar 

  47. Alexander AL, Lee JE, Lazar M, Field AS (2007) Diffusion tensor imaging of the brain. Neurotherapeutics 4(3):316–329. https://doi.org/10.1016/j.nurt.2007.05.011

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jankovic J, Kapadia AS (2001) Functional decline in Parkinson disease. Arch Neurol 58(10):1611–1615

    Article  PubMed  CAS  Google Scholar 

  49. Rowe JB, Hughes L, Ghosh BC, Eckstein D, Williams-Gray CH, Fallon S, Barker RA, Owen AM (2008) Parkinson’s disease and dopaminergic therapy—differential effects on movement, reward and cognition. Brain 131(Pt 8):2094–2105. https://doi.org/10.1093/brain/awn112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

ICICLE-PD was funded by Parkinson’s UK (J-0802, G-1301, G-1507) and supported by the Lockhart Parkinson’s Disease Research Fund, NIHR (National Institute for Health Research) (RG64473); NIHR Biomedical Research Unit in Dementia at Cambridge University Hospitals NHS (National Health Service) Foundation Trust and the University of Cambridge; and NIHR Biomedical Research Unit in Dementia at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University. TM is is funded by an Academic Clinical Fellow from NIHR. LS is supported by Alzheimer’s Research UK (ARUK-SRF2017B-1). EM is in receipt of the Gates Cambridge scholarship. JBR  is supported by the Wellcome Trust (103838) and Medical Research Council (MC-A060-5PQ30).

Author information

Authors and Affiliations

Authors

Contributions

TM: Imaging processing, concluded statistical analyses, manuscript draft and revision. LS: Data analyses, manuscript revision. EM: Manuscript revision. GW: Manuscript revision. MF: Manuscript revision. RAL: Study coordination, participant recruitment, data collection, manuscript revision. AJY: Study coordination, participant recruitment, clinical assessment, data collection and manuscript revision. GWD: Study coordination, participant recruitment, clinical assessment, data collection and manuscript revision. AMO: Manuscript revision. TKK: Study coordination, participant recruitment, clinical assessment, data collection and manuscript revision. DJB: Principal investigator and co-applicant for the funding grant. He was involved in the study design and manuscript revision. JBR: Data acquisition and manuscript revision. RAB: Principal investigator and co-applicant for the funding grant. He was involved in the study design and manuscript revision. DB: Chief investigator and main applicant for the funding grant. He was involved with the study design, supervision and manuscript revision. JTO: Principal investigator and co-applicant for the funding grant. He was involved in the study design, supervision and manuscript revision.

Corresponding author

Correspondence to Thais Minett.

Ethics declarations

Conflicts of interest

Dr Thais Minett reports no disclosure. Dr Li Su reports no disclosure. Elijah Mak reports no disclosure. Dr Guy Williams reports no disclosure. Dr Michael Firbank reports no disclosure. Dr Rachael (A) Lawson reports no disclosure. Dr Alison J. Yarnall has received honoraria from Teva-Lundbeck and sponsorship from Teva-Lundbeck, UCB, GlaxoSmithKline, Genus and Abbvie for attending conferences. Dr Gordon W. Duncan reports no disclosure. Dr Adrian M. Owen reports no disclosure. Dr Tien K. Khoo reports no disclosure. Prof David J. Brooks reports no disclosure. Prof James (B) Rowe received grants from NIHR, Evelyn Trust, McDonnell Foundation, ARUK, PSP Association, AZ-Medimmune and Janssen, but no personal financial remuneration or consultancies or other conflict-of-interest arising from these. Prof David Burn reports no disclosure. Prof John T. O’Brien reports no disclosure. Prof Roger A Barker received grants from Parkinson’s UK, NIHR, Cure Parkinson’s Trust, Evelyn Trust, Rosetrees Trust, MRC and EU along with payment for advisory board attendance from Oxford Biomedica and LCT, and honoraria from Wiley and Springer. Prof David Burn reports no disclosure.

Ethical approval

The study was approved by the Newcastle and North Tyneside Research Ethics Committee and has, therefore, been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All participants provided informed consent prior to their inclusion in the study.

Disclaimer

This article presents independent research funded by Parkinson’s UK and the National Institute for Health Research. The views expressed are those of the authors and not necessarily those of the NHS, Parkinson’s UK the National Institute for Health Research or the Department of Health.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minett, T., Su, L., Mak, E. et al. Longitudinal diffusion tensor imaging changes in early Parkinson’s disease: ICICLE-PD study. J Neurol 265, 1528–1539 (2018). https://doi.org/10.1007/s00415-018-8873-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-018-8873-0

Keywords

Navigation