Skip to main content
Log in

Altered effective connectivity contributes to micrographia in patients with Parkinson’s disease and freezing of gait

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Recently, it was shown that patients with Parkinson’s disease (PD) and freezing of gait (FOG) can also experience freezing episodes during handwriting and present writing problems outside these episodes. So far, the neural networks underlying increased handwriting problems in subjects with FOG are unclear. This study used dynamic causal modeling of fMRI data to investigate neural network dynamics underlying freezing-related handwriting problems and how these networks changed in response to visual cues. Twenty-seven non-freezers and ten freezers performed a pre-writing task with and without visual cues in the scanner with their right hand. The results showed that freezers and non-freezers were able to recruit networks involved in cued and uncued writing in a similar fashion. Whole group analysis also revealed a trend towards altered visuomotor integration in patients with FOG. Next, we controlled for differences in disease severity between both patient groups using a sensitivity analysis. For this, a subgroup of ten non-freezers matched for disease severity was selected by an independent researcher. This analysis further exposed significantly weaker coupling in mostly left hemispheric visuo-parietal, parietal – supplementary motor area, parietal – premotor, and premotor–M1 pathways in freezers compared to non-freezers, irrespective of cues. Correlation analyses revealed that these impairments in connectivity were related to writing amplitude and quality. Taken together, these findings show that freezers have reduced involvement of the supplementary motor area in the motor network, which explains the impaired writing amplitude regulation in this group. In addition, weaker supportive premotor connectivity may have contributed to micrographia in freezers, a pattern that was independent of cueing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A (2011) Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 10:734–744. https://doi.org/10.1016/S1474-4422(11)70143-0

    Article  PubMed  Google Scholar 

  2. Ginis P, Nackaerts E, Nieuwboer A, Heremans E (2017) Cueing for people with Parkinson’s disease with freezing of gait: a narrative review of the state-of-the-art and novel perspectives. Ann Phys Rehabil Med. https://doi.org/10.1016/j.rehab.2017.08.002

    PubMed  Google Scholar 

  3. Rocha PA, Porfirio GM, Ferraz HB, Trevisani VF (2014) Effects of external cues on gait parameters of Parkinson’s disease patients: a systematic review. Clin Neurol Neurosurg 124:127–134. https://doi.org/10.1016/j.clineuro.2014.06.026

    Article  PubMed  Google Scholar 

  4. Spildooren J, Vercruysse S, Meyns P, Vandenbossche J, Heremans E, Desloovere K et al (2012) Turning and unilateral cueing in Parkinson’s disease patients with and without freezing of gait. Neuroscience. https://doi.org/10.1016/j.neuroscience.2012.01.024

    Google Scholar 

  5. Vercruysse S, Gilat M, Shine JM, Heremans E, Lewis S, Nieuwboer A (2014) Freezing beyond gait in Parkinson’s disease: a review of current neurobehavioral evidence. Neurosci Biobehav Rev 43:213–227. https://doi.org/10.1016/j.neubiorev.2014.04.010

    Article  CAS  PubMed  Google Scholar 

  6. Vercruysse S, Spildooren J, Heremans E, Vandenbossche J, Levin O, Wenderoth N et al (2012) Freezing in Parkinson’s disease: a spatiotemporal motor disorder beyond gait. Mov Disord 27:254–263. https://doi.org/10.1002/mds.24015

    Article  PubMed  Google Scholar 

  7. Heremans E, Nackaerts E, Vervoort G, Vercruysse S, Broeder S, Strouwen C et al (2015) Amplitude manipulation evokes upper limb freezing during handwriting in patients with parkinson’s disease with freezing of gait. PLoS One 10:e0142874. https://doi.org/10.1371/journal.pone.0142874

    Article  PubMed  PubMed Central  Google Scholar 

  8. Heremans E, Nackaerts E, Broeder S, Vervoort G, Swinnen SP, Nieuwboer A (2016) Handwriting impairments in people with parkinson’s disease and freezing of gait. Neurorehabilt Neural Repair 30:911–919. https://doi.org/10.1177/1545968316642743

    Article  Google Scholar 

  9. Vercruysse S, Spildooren J, Heremans E, Vandenbossche J, Wenderoth N, Swinnen SP et al (2012) Abnormalities and cue dependence of rhythmical upper-limb movements in Parkinson patients with freezing of gait. Neurorehabilit Neural Repair 26:636–645. https://doi.org/10.1177/1545968311431964

    Article  Google Scholar 

  10. Fasano A, Herman T, Tessitore A, Strafella AP, Bohnen NI (2015) Neuroimaging of freezing of gait. J Parkinsons Dis 5:241–254. https://doi.org/10.3233/JPD-150536

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lewis SJ, Shine JM (2016) The next step: a common neural mechanism for freezing of gait. Neuroscientist 22:72–82. https://doi.org/10.1177/1073858414559101

    Article  PubMed  Google Scholar 

  12. Peterson DS, Pickett KA, Duncan RP, Perlmutter JS, Earhart GM (2014) Brain activity during complex imagined gait tasks in Parkinson disease. Clin Neurophysiol 125:995–1005. https://doi.org/10.1016/j.clinph.2013.10.008

    Article  PubMed  Google Scholar 

  13. Snijders AH, Takakusaki K, Debu B, Lozano AM, Krishna V, Fasano A et al (2016) Physiology of freezing of gait. Ann Neurol 80:644–659. https://doi.org/10.1002/ana.24778

    Article  PubMed  Google Scholar 

  14. Peterson DS, Pickett KA, Duncan R, Perlmutter J, Earhart GM (2014) Gait-related brain activity in people with Parkinson disease with freezing of gait. PLoS One 9:e90634. https://doi.org/10.1371/journal.pone.0090634

    Article  PubMed  PubMed Central  Google Scholar 

  15. Snijders AH, Leunissen I, Bakker M, Overeem S, Helmich RC, Bloem BR et al (2011) Gait-related cerebral alterations in patients with Parkinson’s disease with freezing of gait. Brain 134:59–72. https://doi.org/10.1093/brain/awq324

    Article  PubMed  Google Scholar 

  16. Gilat M, Shine JM, Walton CC, O’Callaghan C, Hall JM, Lewis SJG (2015) Brain activation underlying turning in Parkinson’s disease patients with and without freezing of gait: a virtual reality fMRI study. NPJ Parkinsons Dis 1:15020. https://doi.org/10.1038/npjparkd.2015.20

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fling BW, Cohen RG, Mancini M, Carpenter SD, Fair DA, Nutt JG et al (2014) Functional reorganization of the locomotor network in Parkinson patients with freezing of gait. PLoS One 9:e100291. https://doi.org/10.1371/journal.pone.0100291

    Article  PubMed  PubMed Central  Google Scholar 

  18. Canu E, Agosta F, Sarasso E, Volonte MA, Basaia S, Stojkovic T et al (2015) Brain structural and functional connectivity in Parkinson’s disease with freezing of gait. Hum Brain Mapp 36:5064–5078. https://doi.org/10.1002/hbm.22994

    Article  PubMed  Google Scholar 

  19. Vercruysse S, Spildooren J, Heremans E, Wenderoth N, Swinnen SP, Vandenberghe W et al (2014) The neural correlates of upper limb motor blocks in Parkinson’s disease and their relation to freezing of gait. Cereb Cortex 24:3154–3166. https://doi.org/10.1093/cercor/bht170

    Article  CAS  PubMed  Google Scholar 

  20. Lord S, Archibald N, Mosimann U, Burn D, Rochester L (2012) Dorsal rather than ventral visual pathways discriminate freezing status in Parkinson’s disease. Parkinsonism Relat Disord 18:1094–1096. https://doi.org/10.1016/j.parkreldis.2012.05.016

    Article  PubMed  Google Scholar 

  21. Velu PD, Mullen T, Noh E, Valdivia MC, Poizner H, Baram Y et al (2014) Effect of visual feedback on the occipital-parietal-motor network in Parkinson’s disease with freezing of gait. Front Neurol 4:209. https://doi.org/10.3389/fneur.2013.00209

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nackaerts E, Heremans E, Vervoort G, Smits-Engelsman BC, Swinnen SP, Vandenberghe W et al (2016) Relearning of writing skills in Parkinson’s disease after intensive amplitude training. Mov Disord 31:1209–1216. https://doi.org/10.1002/mds.26565

    Article  PubMed  Google Scholar 

  23. Nieuwboer A, Rochester L, Herman T, Vandenberghe W, Emil GE, Thomaes T et al (2009) Reliability of the new freezing of gait questionnaire: agreement between patients with Parkinson’s disease and their carers. Gait Posture 30:459–463. https://doi.org/10.1016/j.gaitpost.2009.07.108

    Article  PubMed  Google Scholar 

  24. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  25. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    Article  CAS  PubMed  Google Scholar 

  27. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P et al (2008) Movement disorder society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23:2129–2170. https://doi.org/10.1002/mds.22340

    Article  PubMed  Google Scholar 

  28. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  29. Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25:2649–2653. https://doi.org/10.1002/mds.23429

    Article  PubMed  Google Scholar 

  30. Chen CC, Granger CV, Peimer CA, Moy OJ, Wald S (2005) Manual ability measure (MAM-16): a preliminary report on a new patient-centred and task-oriented outcome measure of hand function. J Hand Surg 30:207–216. https://doi.org/10.1016/j.jhsb.2004.12.005

    Article  CAS  Google Scholar 

  31. Zigmond AS, Snaith RP (1983) The hospital anxiety and depression scale. Acta Psychiatr Scand 67:361–370

    Article  CAS  PubMed  Google Scholar 

  32. Heremans E, Nieuwboer A, Spildooren J, Vandenbossche J, Deroost N, Soetens E et al (2013) Cognitive aspects of freezing of gait in Parkinson’s disease: a challenge for rehabilitation. J Neural Transm (Vienna) 120:543–557. https://doi.org/10.1007/s00702-012-0964-y

    Article  Google Scholar 

  33. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I et al (2005) The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53:695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x

    Article  PubMed  Google Scholar 

  34. Zadikoff C, Fox SH, Tang-Wai DF, Thomsen T, de Bie RM, Wadia P et al (2008) A comparison of the mini mental state exam to the montreal cognitive assessment in identifying cognitive deficits in Parkinson’s disease. Mov Disord 23:297–299. https://doi.org/10.1002/mds.21837

    Article  PubMed  Google Scholar 

  35. Nackaerts E, Nieuwboer A, Broeder S, Smits-Engelsman BC, Swinnen SP, Vandenberghe W et al (2016) Opposite effects of visual cueing during writing-like movements of different amplitudes in Parkinson’s disease. Neurorehabilit Neural Repair 30:431–439. https://doi.org/10.1177/1545968315601361

    Article  Google Scholar 

  36. Nackaerts E, Heremans E, Smits-Engelsman BC, Broeder S, Vandenberghe W, Bergmans B et al (2017) Validity and reliability of a new tool to evaluate handwriting difficulties in Parkinson’s disease. PLoS One 12:e0173157. https://doi.org/10.1371/journal.pone.0173157

    Article  PubMed  PubMed Central  Google Scholar 

  37. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59:2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018

    Article  PubMed  Google Scholar 

  38. Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 19:1273–1302

    Article  CAS  PubMed  Google Scholar 

  39. Horovitz SG, Gallea C, Najee-Ullah M, Hallett M (2013) Functional anatomy of writing with the dominant hand. PLoS One 8:e67931. https://doi.org/10.1371/journal.pone.0067931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Planton S, Jucla M, Roux FE, Demonet JF (2013) The “handwriting brain”: a meta-analysis of neuroimaging studies of motor versus orthographic processes. Cortex 49:2772–2787. https://doi.org/10.1016/j.cortex.2013.05.011

    Article  PubMed  Google Scholar 

  41. Herz DM, Eickhoff SB, Lokkegaard A, Siebner HR (2014) Functional neuroimaging of motor control in Parkinson’s disease: a meta-analysis. Hum Brain Mapp 35:3227–3237. https://doi.org/10.1002/hbm.22397

    Article  PubMed  Google Scholar 

  42. Grefkes C, Wang LE, Eickhoff SB, Fink GR (2010) Noradrenergic modulation of cortical networks engaged in visuomotor processing. Cereb Cortex 20:783–797. https://doi.org/10.1093/cercor/bhp144

    Article  PubMed  Google Scholar 

  43. Michely J, Volz LJ, Barbe MT, Hoffstaedter F, Viswanathan S, Timmermann L et al (2015) Dopaminergic modulation of motor network dynamics in Parkinson’s disease. Brain. https://doi.org/10.1093/brain/awu381

    PubMed  PubMed Central  Google Scholar 

  44. Wu T, Liu J, Zhang H, Hallett M, Zheng Z, Chan P (2015) Attention to automatic movements in parkinson’s disease: modified automatic mode in the striatum. Cereb Cortex 25:3330–3342. https://doi.org/10.1093/cercor/bhu135

    Article  PubMed  Google Scholar 

  45. Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP (2003) Internal vs external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. NeuroImage 19:764–776

    Article  PubMed  Google Scholar 

  46. Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian model selection for group studies. NeuroImage 46:1004–1017. https://doi.org/10.1016/j.neuroimage.2009.03.025

    Article  PubMed  PubMed Central  Google Scholar 

  47. Peterson DS, King LA, Cohen RG, Horak FB (2016) Cognitive contributions to freezing of gait in parkinson disease: implications for physical rehabilitation. Phys Ther 96:659–670. https://doi.org/10.2522/ptj.20140603

    Article  PubMed  Google Scholar 

  48. Cowie D, Limousin P, Peters A, Day BL (2010) Insights into the neural control of locomotion from walking through doorways in Parkinson’s disease. Neuropsychologia 48:2750–2757. https://doi.org/10.1016/j.neuropsychologia.2010.05.022

    Article  PubMed  Google Scholar 

  49. Matar E, Shine JM, Naismith SL, Lewis SJ (2013) Using virtual reality to explore the role of conflict resolution and environmental salience in freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord 19:937–942. https://doi.org/10.1016/j.parkreldis.2013.06.002

    Article  PubMed  Google Scholar 

  50. Spildooren J, Vercruysse S, Heremans E, Galna B, Vandenbossche J, Desloovere K et al (2013) Head-pelvis coupling is increased during turning in patients with Parkinson’s disease and freezing of gait. Mov Disord 28:619–625. https://doi.org/10.1002/mds.25285

    Article  PubMed  Google Scholar 

  51. Handojoseno AM, Gilat M, Ly QT, Chamtie H, Shine JM, Nguyen TN et al (2015) An EEG study of turning freeze in Parkinson’s disease patients: the alteration of brain dynamic on the motor and visual cortex. Conf Proc IEEE Eng Med Biol Soc 2015:6618–6621. https://doi.org/10.1109/EMBC.2015.7319910

    PubMed  Google Scholar 

  52. Tessitore A, Amboni M, Esposito F, Russo A, Picillo M, Marcuccio L et al (2012) Resting-state brain connectivity in patients with Parkinson’s disease and freezing of gait. Parkinsonism Relat Disord 18:781–787. https://doi.org/10.1016/j.parkreldis.2012.03.018

    Article  PubMed  Google Scholar 

  53. Randhawa BK, Farley BG, Boyd LA (2013) Repetitive transcranial magnetic stimulation improves handwriting in Parkinson’s disease. Parkinson’s Dis 2013:751925. https://doi.org/10.1155/2013/751925

    Google Scholar 

  54. Jahanshahi M, Jones CR, Zijlmans J, Katzenschlager R, Lee L, Quinn N et al (2010) Dopaminergic modulation of striato-frontal connectivity during motor timing in Parkinson’s disease. Brain 133:727–745. https://doi.org/10.1093/brain/awq012

    Article  PubMed  Google Scholar 

  55. Wu T, Chan P, Hallett M (2010) Effective connectivity of neural networks in automatic movements in Parkinson’s disease. NeuroImage 49:2581–2587. https://doi.org/10.1016/j.neuroimage.2009.10.051

    Article  CAS  PubMed  Google Scholar 

  56. Wu T, Hallett M (2005) A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain 128:2250–2259. https://doi.org/10.1093/brain/awh569

    Article  PubMed  Google Scholar 

  57. Wu T, Hallett M (2013) The cerebellum in Parkinson’s disease. Brain 136:696–709. https://doi.org/10.1093/brain/aws360

    Article  PubMed  Google Scholar 

  58. Jenkins IH, Jahanshahi M, Jueptner M, Passingham RE, Brooks DJ (2000) Self-initiated versus externally triggered movements. II. The effect of movement predictability on regional cerebral blood flow. Brain 123(Pt 6):1216–1228

    Article  PubMed  Google Scholar 

  59. Jueptner M, Weiller C (1998) A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain 121(Pt 8):1437–1449

    Article  PubMed  Google Scholar 

  60. Heuninckx S, Wenderoth N, Swinnen SP (2010) Age-related reduction in the differential pathways involved in internal and external movement generation. Neurobiol Aging 31:301–314. https://doi.org/10.1016/j.neurobiolaging.2008.03.021

    Article  CAS  PubMed  Google Scholar 

  61. Ginis P, Heremans E, Ferrari A, Bekkers EMJ, Canning CG, Nieuwboer A (2017) External input for gait in people with Parkinson’s disease with and without freezing of gait: one size does not fit all. J Neurol 264:1488–1496. https://doi.org/10.1007/s00415-017-8552-6

    Article  PubMed  Google Scholar 

  62. Price CJ, Friston KJ (2002) Functional imaging studies of neuropsychological patients: applications and limitations. Neurocase 8:345–354. https://doi.org/10.1076/neur.8.4.345.16186

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all participants in this study. We thank Dr. Bruno Bergmans (AZ Sint-Jan, Bruges) for his help in recruitment of participants and Ir. Marc Beirinckx for development of the tablet and for providing technical support. The Research Foundation-Flanders (FWO) partially supported this work (Grant number G.0906.11). E. Heremans is a Postdoctoral Researcher and W. Vandenberghe a Senior Clinical Investigator at the FWO. E. Nackaerts is a postdoctoral researcher funded by KU Leuven research fund (Grant number PDM/17/197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelien Nackaerts.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 188 kb)

Supplementary material 2 (PDF 597 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nackaerts, E., Nieuwboer, A., Broeder, S. et al. Altered effective connectivity contributes to micrographia in patients with Parkinson’s disease and freezing of gait. J Neurol 265, 336–347 (2018). https://doi.org/10.1007/s00415-017-8709-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-017-8709-3

Keywords

Navigation