Skip to main content

Advertisement

Log in

Managing MS in a changing treatment landscape

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Increasing options are dictating the development of new algorithms to provide guidance in the treatment of people with multiple sclerosis (MS). There is a wealth of evidence on the safety and efficacy of interferon-beta and glatiramer acetate, which have been used in Europe and in the United States for more than 10 years. The spectrum of approved indications for these conventional disease modifying therapies includes the treatment of relapsing-remitting MS, secondary progressive MS, and the clinically isolated syndrome. Beyond these therapies we already have the recently introduced antibody natalizumab and, in some countries, the immunosuppressive agent mitoxantrone. Oral therapies are expected in the near future, with the sphingosin-1-phosphate receptor modulator fingolimod approved in the US and the EU and the purine nucleoside analogue cladribine in Australia and Russia. The evidence on all of these conventional and novel therapeutics is reviewed in this paper to provide an overview of the changing landscape of MS treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Evidence for Interferon Dose–Response: European-North American Comparative Efficacy.

  2. Independent comparison of interferon.

  3. International MS secondary Progressive Avonex Controlled Trial.

  4. Betaferon efficacy yielding outcomes of a new dose.

  5. Betaseron versus Copaxone in MS with triple-dose gadolinium and 3T MRI endpoints.

  6. Rebif versus Glatiramer acetate in relapsing MS disease.

  7. Controlled High-Risk Subjects Avonex Multiple Sclerosis Prevention Study.

  8. Early treatment of Multiple Sclerosis.

  9. Betaferon in newly emerging Multiple Sclerosis for initial treatment.

  10. Early glatiramer acetate treatment in delaying conversion to clinically definite Multiple Sclerosis in subjects presenting with a clinically isolated syndrome.

  11. Mitoxantrone in Multiple Sclerosis.

  12. Fertility and Mitoxantrone in MS.

  13. Natalizumab safety and efficacy in relapsing remitting Multiple Sclerosis.

  14. Safety and efficacy of natalizumab in combination with Avonex.

  15. FTY720 research evaluating effects of daily oral therapy in Multiple Sclerosis.

  16. Trial assessing injectable interferon versus FTY720 oral in RRMS.

  17. Cladribine tablets treating MS orally.

References

  1. Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 46:907–911

    PubMed  CAS  Google Scholar 

  2. Lassmann H, Bruck W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17:210–218

    Article  PubMed  Google Scholar 

  3. Kuhlmann T, Lingfeld G, Bitsch A et al (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202–2212

    Article  PubMed  Google Scholar 

  4. De Stefano N, Narayanan S, Francis GS et al (2001) Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 58:65–70

    Article  PubMed  Google Scholar 

  5. Weinshenker BG, Bass B, Rice GP et al (1989) The natural history of multiple sclerosis: a geographically based study. 2. Predictive value of the early clinical course. Brain 112(Pt 6):1419–1428

    Article  PubMed  Google Scholar 

  6. Ebers GC (2001) Natural History of multiple sclerosis. J Neurol Neurosurg Psychiatry 71:ii16–ii19

    PubMed  Google Scholar 

  7. Tintore M, Rovira A, Rio J et al (2006) Baseline MRI predicts future attacks and disability in clinically isolated syndromes. Neurology 67:968–972

    Article  PubMed  CAS  Google Scholar 

  8. Fisniku LK, Brex PA, Altmann DR et al (2008) Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain 131:808–817

    Article  PubMed  CAS  Google Scholar 

  9. Langer-Gould A, Popat RA, Huang SM et al (2006) Clinical and demographic predictors of long-term disability in patients with relapsing-remitting multiple sclerosis: a systematic review. Arch Neurol 63:1686–1691

    Article  PubMed  Google Scholar 

  10. McDonald WI, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127

    Article  PubMed  CAS  Google Scholar 

  11. Polman CH, Reingold SC, Edan G et al (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58:840–846

    Article  PubMed  Google Scholar 

  12. Dhib-Jalbut S, Marks S (2010) Interferon-beta mechanisms of action in multiple sclerosis. Neurology 74(Suppl 1):S17–S24

    Article  PubMed  CAS  Google Scholar 

  13. Racke MK, Lovett-Racke AE, Karandikar NJ (2010) The mechanism of action of glatiramer acetate treatment in multiple sclerosis. Neurology 74(Suppl 1):S25–S30

    Article  PubMed  CAS  Google Scholar 

  14. Linker RA, Lee D-H, Demir S et al (2010) Functional role of brain-derived neurotrophic factor in neuroprotective autoimmunity: therapeutic implications in a model of multiple sclerosis. Brain 133:2248–2263

    PubMed  Google Scholar 

  15. Paty DW, Li DK (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Neurology 43:662–667

    PubMed  CAS  Google Scholar 

  16. The IFNB Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group. Neurology 43:655–661

    Google Scholar 

  17. The IFNB Multiple Sclerosis Study Group (1995) Interferon beta-1b in the treatment of multiple sclerosis: final outcome of the randomized controlled trial. The IFNB Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. Neurology 45:1277–1285

    Google Scholar 

  18. Goodin DS, Frohman EM, Garmany GP Jr et al (2002) Disease modifying therapies in multiple sclerosis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the MS Council for Clinical Practice Guidelines. Neurology 58:169–178

    PubMed  CAS  Google Scholar 

  19. Wiendl H, Toyka KV, Rieckmann P et al (2008) Basic and escalating immunomodulatory treatments in multiple sclerosis: current therapeutic recommendations. J Neurol 255:1449–1463

    Article  PubMed  CAS  Google Scholar 

  20. Kappos L, European Study Group on Interferon beta-1b in Secondary progressive MS (1998) Placebo-controlled multicentre randomised trial of interferon beta-1b in treatment of secondary progressive multiple sclerosis. European Study Group on interferon beta-1b in secondary progressive MS. Lancet 352:1491–1497

    Article  CAS  Google Scholar 

  21. Panitch H, Miller A, Paty D et al (2004) Interferon beta-1b in secondary progressive MS: results from a 3-year controlled study. Neurology 63:1788–1795

    PubMed  Google Scholar 

  22. Jacobs LD, Cookfair DL, Rudick RA et al (1996) Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann Neurol 39:285–294

    Article  PubMed  CAS  Google Scholar 

  23. PRISMS Study Group (1998) Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group. Lancet 352:1498–1504

    Article  Google Scholar 

  24. Li DK, Paty DW (1999) Magnetic resonance imaging results of the PRISMS trial: a randomized, double-blind, placebo-controlled study of interferon-beta1a in relapsing-remitting multiple sclerosis. Prevention of relapses and disability by interferon-beta1a subcutaneously in multiple sclerosis. Ann Neurol 46:197–206

    Article  PubMed  CAS  Google Scholar 

  25. Johnson KP, Brooks BR, Cohen JA et al (1995) Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 45:1268–1276

    PubMed  CAS  Google Scholar 

  26. Comi G, Filippi M, Wolinsky JS (2001) European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging–measured disease activity and burden in patients with relapsing multiple sclerosis. European/Canadian Glatiramer Acetate Study Group. Ann Neurol 49:290–297

    Article  PubMed  CAS  Google Scholar 

  27. Cohen JA, Cutter GR, Fischer JS et al (2002) Benefit of interferon beta-1a on MSFC progression in secondary progressive MS. Neurology 59:679–687

    PubMed  CAS  Google Scholar 

  28. SPECTRIMS Study Group (2001) Randomized controlled trial of interferon-beta-1a in secondary progressive MS: clinical results. Neurology 56:1496–1504

    Google Scholar 

  29. Li DKB, Zhao GJ, Paty DW (2001) Randomized controlled trial of interferon-beta-1a in secondary progressive MS: MRI results. Neurology 56:1505–1513

    PubMed  CAS  Google Scholar 

  30. Panitch H, Goodin DS, Francis G et al (2002) Randomized, comparative study of interferon beta-1a treatment regimens in MS: the EVIDENCE Trial. Neurology 59:1496–1506

    PubMed  CAS  Google Scholar 

  31. Durelli L, Verdun E, Barbero P et al (2002) Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: results of a 2-year prospective randomised multicentre study (INCOMIN). Lancet 359:1453–1460

    Article  PubMed  CAS  Google Scholar 

  32. O’Connor P, Filippi M, Arnason B et al (2009) 250 microg or 500 microg interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol 8:889–897

    Article  PubMed  CAS  Google Scholar 

  33. Cadavid D, Wolansky LJ, Skurnick J et al (2009) Efficacy of treatment of MS with IFNbeta-1b or glatiramer acetate by monthly brain MRI in the BECOME study. Neurology 72:1976–1983

    Article  PubMed  CAS  Google Scholar 

  34. Mikol DD, Barkhof F, Chang P et al (2008) Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs Glatiramer Acetate in Relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol 7:903–914

    Article  PubMed  CAS  Google Scholar 

  35. Reder AT, Ebers G, Cutter G, et al. (2010) Survival analysis 21 years after the initiation of the pivotal Interferon Beta-1b trial in patients with RRMS. European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS), Gothenburg, Sweden:P 903

  36. Jacobs LD, Beck RW, Simon JH et al (2000) Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. CHAMPS Study Group. N Engl J Med 343:898–904

    Article  PubMed  CAS  Google Scholar 

  37. Comi G, Filippi M, Barkhof F et al (2001) Effect of early interferon treatment on conversion to definite multiple sclerosis: a randomised study. Lancet 357:1576–1582

    Article  PubMed  CAS  Google Scholar 

  38. Kappos L, Polman CH, Freedman MS et al (2006) Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology 67:1242–1249

    Article  PubMed  CAS  Google Scholar 

  39. Kappos L, Freedman MS, Polman CH et al (2007) Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study. Lancet 370:389–397

    Article  PubMed  CAS  Google Scholar 

  40. Comi G, Martinelli V, Rodegher M et al (2009) Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): a randomised, double-blind, placebo-controlled trial. Lancet 374:1503–1511

    Article  PubMed  CAS  Google Scholar 

  41. Kinkel RP, Kollman C, O’Connor P et al (2006) IM interferon beta-1a delays definite multiple sclerosis 5 years after a first demyelinating event. Neurology 66:678–684

    Article  PubMed  CAS  Google Scholar 

  42. Kinkel RP, Tanner JP, Simon J, et al. (2009) CHAMPIONS extension study: 10 year follow-up after a clinically isolated syndrome (CIS) in high risk patients. Neurology 72

  43. Kappos L, Freedman MS, Polman CH et al (2009) Long-term effect of early treatment with interferon beta-1b after a first clinical event suggestive of multiple sclerosis: 5-year active treatment extension of the phase 3 BENEFIT trial. Lancet Neurol 8:987–997

    Article  PubMed  CAS  Google Scholar 

  44. Rojas JI, Romano M, Ciapponi A, et al. (2010) Interferon Beta for primary progressive multiple sclerosis. Cochrane Database Syst Rev:CD006643

  45. Wolinsky JS, Narayana PA, O’Connor P et al (2007) Glatiramer acetate in primary progressive multiple sclerosis: Results of a multinational, multicenter, double-blind, placebo-controlled trial. Ann Neurol 61:14–24

    Article  PubMed  CAS  Google Scholar 

  46. Hawker K, O’Connor P, Freedman MS et al (2009) Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol 66:460–471

    Article  PubMed  CAS  Google Scholar 

  47. Fidler JM, DeJoy SQ, Gibbons JJ Jr (1986) Selective immunomodulation by the antineoplastic agent mitoxantrone. I. Suppression of B lymphocyte function. J Immunol 137:727–732

    PubMed  CAS  Google Scholar 

  48. Fidler JM, DeJoy SQ, Smith FR 3rd et al (1986) Selective immunomodulation by the antineoplastic agent mitoxantrone. II. Nonspecific adherent suppressor cells derived from mitoxantrone-treated mice. J Immunol 136:2747–2754

    PubMed  CAS  Google Scholar 

  49. Chan A, Weilbach FX, Toyka KV et al (2005) Mitoxantrone induces cell death in peripheral blood leucocytes of multiple sclerosis patients. Clin Exp Immunol 139:152–158

    Article  PubMed  CAS  Google Scholar 

  50. Neuhaus O, Wiendl H, Kieseier BC et al (2005) Multiple sclerosis: mitoxantrone promotes differential effects on immunocompetent cells in vitro. J Neuroimmunol 168:128–137

    Article  PubMed  CAS  Google Scholar 

  51. Millefiorini E, Gasperini C, Pozzilli C et al (1997) Randomized placebo-controlled trial of mitoxantrone in relapsing-remitting multiple sclerosis: 24-month clinical and MRI outcome. J Neurol 244:153–159

    Article  PubMed  CAS  Google Scholar 

  52. van de Wyngaert FA, Beguin C, D’Hooghe MB et al (2001) A double-blind clinical trial of mitoxantrone versus methylprednisolone in relapsing, secondary progressive multiple sclerosis. Acta Neurol Belg 101:210–216

    PubMed  Google Scholar 

  53. Edan G, Miller D, Clanet M et al (1997) Therapeutic effect of mitoxantrone combined with methylprednisolone in multiple sclerosis: a randomised multicentre study of active disease using MRI and clinical criteria. J Neurol Neurosurg Psychiatry 62:112–118

    Article  PubMed  CAS  Google Scholar 

  54. Hartung HP, Gonsette R, Konig N et al (2002) Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360:2018–2025

    Article  PubMed  Google Scholar 

  55. Marriott JJ, Miyasaki JM, Gronseth G et al (2010) Evidence report: the efficacy and safety of mitoxantrone (Novantrone) in the treatment of multiple sclerosis: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 74:1463–1470

    Article  PubMed  CAS  Google Scholar 

  56. Kingwell E, Koch M, Leung B et al (2010) Cardiotoxicity and other adverse events associated with mitoxantrone treatment for MS. Neurology 74:1822–1826

    Article  PubMed  CAS  Google Scholar 

  57. Novantrone Prescribing Information (2009). http://www.novantrone.com/assets/pdf/novantrone_prescribing_info.pdf. Accessed 20 January 2011

  58. Mistry AR, Felix CA, Whitmarsh RJ et al (2005) DNA topoisomerase II in therapy-related acute promyelocytic leukemia. N Engl J Med 352:1529–1538

    Article  PubMed  CAS  Google Scholar 

  59. Cocco E, Sardu C, Gallo P et al (2008) Frequency and risk factors of mitoxantrone-induced amenorrhea in multiple sclerosis: the FEMIMS study. Mult Scler 14:1225–1233

    Article  PubMed  CAS  Google Scholar 

  60. Cotte S, von Ahsen N, Kruse N et al (2009) ABC-transporter gene-polymorphisms are potential pharmacogenetic markers for mitoxantrone response in multiple sclerosis. Brain 132:2517–2530

    Article  PubMed  CAS  Google Scholar 

  61. Rieckmann P (2009) Concepts of induction and escalation therapy in multiple sclerosis. J Neurol Sci 277(Suppl 1):S42–S45

    Article  PubMed  CAS  Google Scholar 

  62. Le Page E, Comi G, Filippi M et al (2008) Comparison of two therapeutic strategies in aggressive relapsing-remitting MS: mitoxantrone as induction for 6 months followed by interferon-b-1b versus interferon-b-1b. A 3-Year Randomized Trial. American Academy of Neurology, 60th Annual Meeting, Chicago:S22.004

  63. Arnold DL, Campagnolo D, Panitch H et al (2008) Glatiramer acetate after mitoxantrone induction improves MRI markers of lesion volume and permanent tissue injury in MS. J Neurol 255:1473–1478

    Article  PubMed  CAS  Google Scholar 

  64. Cocco E, Marchi P, Sardu C et al (2007) Mitoxantrone treatment in patients with early relapsing-remitting multiple sclerosis. Mult Scler 13:975–980

    Article  PubMed  CAS  Google Scholar 

  65. Le Page E, Leray E, Taurin G et al (2008) Mitoxantrone as induction treatment in aggressive relapsing remitting multiple sclerosis: treatment response factors in a 5 year follow-up observational study of 100 consecutive patients. J Neurol Neurosurg Psychiatry 79:52–56

    Article  PubMed  Google Scholar 

  66. Ramtahal J, Jacob A, Das K et al (2006) Sequential maintenance treatment with glatiramer acetate after mitoxantrone is safe and can limit exposure to immunosuppression in very active, relapsing remitting multiple sclerosis. J Neurol 253:1160–1164

    Article  PubMed  CAS  Google Scholar 

  67. Zaffaroni M, Rizzo A, Baldini SM et al (2008) Induction and add-on therapy with mitoxantrone and interferon beta in multiple sclerosis. Neurol Sci 29(Suppl 2):S230–S232

    Article  PubMed  Google Scholar 

  68. Kita M, Cohen JA, Fox RJ et al (2004) A phase II trial of mitoxantrone in patients with primary progressive multiple sclerosis. Neurology 62:A99

    Google Scholar 

  69. Rudick RA, Sandrock A (2004) Natalizumab: alpha 4-integrin antagonist selective adhesion molecule inhibitors for MS. Expert Rev Neurother 4:571–580

    Article  PubMed  CAS  Google Scholar 

  70. Kent SJ, Karlik SJ, Cannon C et al (1995) A monoclonal antibody to alpha 4 integrin suppresses and reverses active experimental allergic encephalomyelitis. J Neuroimmunol 58:1–10

    Article  PubMed  CAS  Google Scholar 

  71. Polman CH, O’Connor PW, Havrdova E et al (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354:899–910

    Article  PubMed  CAS  Google Scholar 

  72. Hutchinson M, Kappos L, Calabresi PA et al (2009) The efficacy of natalizumab in patients with relapsing multiple sclerosis: subgroup analyses of AFFIRM and SENTINEL. J Neurol 256:405–415

    Article  PubMed  CAS  Google Scholar 

  73. Rudick RA, Stuart WH, Calabresi PA et al (2006) Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med 354:911–923

    Article  PubMed  CAS  Google Scholar 

  74. O’Connor P, Polman C, Goodman A et al (2009) Efficacy and Safety of Natalizumab in the STRATA Study. In: American Academy of Neurology. Seattle, P06.127

  75. Polman C, Goodman A, Kappos L et al (2010) Efficacy and Safety of Natalizumab in the STRATA Study. American Academy of Neurology, Toronto, ON, Canada, P06.173

  76. Havrdova E, Galetta S, Hutchinson M et al (2009) Effect of natalizumab on clinical and radiological disease activity in multiple sclerosis: a retrospective analysis of the Natalizumab Safety and Efficacy in Relapsing-Remitting Multiple Sclerosis (AFFIRM) study. Lancet Neurol 8:254–260

    Article  PubMed  Google Scholar 

  77. Munschauer F, Giovannoni G, Lublin F et al (2009) Sustained improvement in physical disability with Natalizumab in patients with relapsing multiple sclerosis. American Academy of Neurology, Seattle, P06.131

  78. Langer-Gould A, Atlas SW, Green AJ et al (2005) Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N Engl J Med 353:375–381

    Article  PubMed  CAS  Google Scholar 

  79. Kleinschmidt-DeMasters BK, Tyler KL (2005) Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N Engl J Med 353:369–374

    Article  PubMed  CAS  Google Scholar 

  80. Wenning W, Haghikia A, Laubenberger J et al (2009) Treatment of progressive multifocal leukoencephalopathy associated with natalizumab. N Engl J Med 361:1075–1080

    Article  PubMed  CAS  Google Scholar 

  81. (2011) UPDATE on Tysabri and PML. Sponsor and FDA provide information on cases and risks. http://www.nationalmssociety.org/news/news-detail/index.aspx?nid=2308. Accessed 04 March 2011

  82. Chen Y, Bord E, Tompkins T et al (2009) Asymptomatic reactivation of JC virus in patients treated with natalizumab. N Engl J Med 361:1067–1074

    Article  PubMed  CAS  Google Scholar 

  83. Jilek S, Jaquiery E, Hirsch HH et al (2010) Immune responses to JC virus in patients with multiple sclerosis treated with natalizumab: a cross-sectional and longitudinal study. Lancet Neurol 9:264–272

    Article  PubMed  CAS  Google Scholar 

  84. Warnke C, Smolianov V, Dehmel T et al (2010) CD34+ progenitor cells mobilized by natalizumab are not a relevant reservoir for JC virus. Mult Scler 17(2):151–156

    Google Scholar 

  85. del Pilar Martin M, Cravens PD, Winger R et al (2008) Decrease in the numbers of dendritic cells and CD4+ T cells in cerebral perivascular spaces due to natalizumab. Arch Neurol 65:1596–1603

    Article  PubMed  Google Scholar 

  86. Clifford DB, De Luca A, Simpson DM et al (2010) Natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: lessons from 28 cases. Lancet Neurol 9:438–446

    Article  PubMed  CAS  Google Scholar 

  87. Tan CS, Koralnik IJ (2010) Progressive multifocal leukoencephalopathy and other disorders caused by JC virus: clinical features and pathogenesis. Lancet Neurol 9:425–437

    Article  PubMed  CAS  Google Scholar 

  88. Boster A, Hreha S, Berger JR et al (2009) Progressive multifocal leukoencephalopathy and relapsing-remitting multiple sclerosis: a comparative study. Arch Neurol 66:593–599

    Article  PubMed  Google Scholar 

  89. Bozic C, Cristiano LM, Hyde R et al (2010) Utilisation and safety of natalizumab in patients with relapsing multiple sclerosis. European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS), Gothenburg, Sweden, p 893

  90. Sunyaev SR, Lugovskoy A, Simon K et al (2009) Adaptive mutations in the JC virus protein capsid are associated with progressive multifocal leukoencephalopathy (PML). PLoS Genet 5:e1000368

    Article  PubMed  CAS  Google Scholar 

  91. Tan CS, Chen Y, Viscidi RP et al (2010) Discrepant findings in immune responses to JC virus in patients receiving natalizumab. Lancet Neurol 9:565-566; author reply 566-567

    Google Scholar 

  92. Sadiq SA, Puccio LM, Brydon EW (2010) JCV detection in multiple sclerosis patients treated with natalizumab. J Neurol 257:954–958

    Article  PubMed  CAS  Google Scholar 

  93. Haghikia A, Pappas D, Pula B et al (2009) Assessment of a possible bioenergetic marker of cellular immunocompetence in MS-patients undergoing immunotherapy: longitudinal analyses. Neurology 72 (Suppl3): P09.102

  94. Gorelik L, Lerner M, Bixler S et al (2010) Anti-JC virus antibodies: implications for PML risk stratification. Ann Neurol 68:295–303

    Article  PubMed  Google Scholar 

  95. Kerbrat Lecuyer A, Le Page E, Leray E et al (2010) Assessment of disease activity within 6 months after natalizumab discontinuation: an observational study of 28 consecutive relapsing–remitting multiple sclerosis patients. European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS), Gothenburg, Sweden:P394

  96. Khatri BO, Man S, Giovannoni G et al (2009) Effect of plasma exchange in accelerating natalizumab clearance and restoring leukocyte function. Neurology 72:402–409

    Article  PubMed  CAS  Google Scholar 

  97. Linda H, von Heijne A, Major EO et al (2009) Progressive multifocal leukoencephalopathy after natalizumab monotherapy. N Engl J Med 361:1081–1087

    Article  PubMed  CAS  Google Scholar 

  98. Elphick GF, Querbes W, Jordan JA et al (2004) The human polyomavirus, JCV, uses serotonin receptors to infect cells. Science 306:1380–1383

    Article  PubMed  CAS  Google Scholar 

  99. Brickelmaier M, Lugovskoy A, Kartikeyan R et al (2009) Identification and characterization of mefloquine efficacy against JC virus in vitro. Antimicrob Agents Chemother 53:1840–1849

    Article  PubMed  CAS  Google Scholar 

  100. Kappos L, Bates D, Hartung HP et al (2007) Natalizumab treatment for multiple sclerosis: recommendations for patient selection and monitoring. Lancet Neurol 6:431–441

    Article  PubMed  Google Scholar 

  101. Vermersch P, Foley J, Gold R et al (2010) Overview of clinical outcomes in cases of natalizumab-associated progressive multifocal leukoencephalopathy. European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS), Gothenburg, Sweden, p 112

  102. Tremlett HL, Oger J (2003) Interrupted therapy: stopping and switching of the beta-interferons prescribed for MS. Neurology 61:551–554

    PubMed  Google Scholar 

  103. Devonshire V, Lapierre Y, Macdonell R et al (2011) The Global Adherence Project (GAP): a multicenter observational study on adherence to disease-modifying therapies in patients with relapsing-remitting multiple sclerosis. Eur J Neurol 18:69–77

    Article  PubMed  CAS  Google Scholar 

  104. Patti F (2010) Optimizing the benefit of multiple sclerosis therapy: the importance of treatment adherence. Patient Prefer Adherence 4:1–9

    Article  PubMed  Google Scholar 

  105. Fujita T, Inoue K, Yamamoto S et al (1994) Fungal metabolites. Part 11. A potent immunosuppressive activity found in Isaria sinclairii metabolite. J Antibiot Tokyo 47:208–215

    PubMed  CAS  Google Scholar 

  106. Brinkmann V (2009) FTY720 (fingolimod) in Multiple Sclerosis: therapeutic effects in the immune and the central nervous system. Br J Pharmacol 158:1173–1182

    Article  PubMed  CAS  Google Scholar 

  107. Kappos L, Antel J, Comi G et al (2006) Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med 355:1124–1140

    Article  PubMed  CAS  Google Scholar 

  108. O’Connor P, Comi G, Montalban X et al (2009) Oral fingolimod (FTY720) in multiple sclerosis: two-year results of a phase II extension study. Neurology 72:73–79

    Article  PubMed  CAS  Google Scholar 

  109. Comi G, O’Connor P, Montalban X et al (2010) Phase II study of oral fingolimod (FTY720) in multiple sclerosis: 3-year results. Mult Scler 16:197–207

    Article  PubMed  CAS  Google Scholar 

  110. Kappos L, Radue EW, O’Connor P et al (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362:387–401

    Article  PubMed  CAS  Google Scholar 

  111. Cohen JA, Barkhof F, Comi G et al (2010) Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 362:402–415

    Article  PubMed  CAS  Google Scholar 

  112. Cohen JA, Kappos L, Pelletier J et al (2010) Oral fingolimod (FTY720) in relapsing-remitting multiple sclerosis: safety findings from TRANSFORMS and FREEDOMS trials. Consortium of Multiple Sclerosis Centers (CMSC), San Antonio, p S22

  113. Saab G, Almony A, Blinder KJ et al (2008) Reversible cystoid macular edema secondary to fingolimod in a renal transplant recipient. Arch Ophthalmol 126:140–141

    Article  PubMed  Google Scholar 

  114. Khatri B, Barkhof F, Comi G et al (2010) 24-Month efficacy and safety outcomes from the TRANSFORMS extension study of oral fingolimod (FTY720) in patients with relapsing-remitting multiple sclerosis. American Academy of Neurology, Toronto, P03.125

  115. Carson DA, Kaye J, Seegmiller JE (1977) Lymphospecific toxicity in adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency: possible role of nucleoside kinase(s). Proc Natl Acad Sci USA 74:5677–5681

    Article  PubMed  CAS  Google Scholar 

  116. Carson DA, Wasson DB, Taetle R et al (1983) Specific toxicity of 2-chlorodeoxyadenosine toward resting and proliferating human lymphocytes. Blood 62:737–743

    PubMed  CAS  Google Scholar 

  117. Guarnaccia JB, Rinder H, Smith B (2008) Preferential effects of cladribine on lymphocyte subpopulations. Mult Scler 14:S45 (P55)

    Google Scholar 

  118. Beutler E, Sipe JC, Romine JS et al (1996) The treatment of chronic progressive multiple sclerosis with cladribine. Proc Natl Acad Sci USA 93:1716–1720

    Article  PubMed  CAS  Google Scholar 

  119. Romine JS, Sipe JC, Koziol JA et al (1999) A double-blind, placebo-controlled, randomized trial of cladribine in relapsing-remitting multiple sclerosis. Proc Assoc Am Physicians 111:35–44

    Article  PubMed  CAS  Google Scholar 

  120. Rice GP, Filippi M, Comi G (2000) Cladribine and progressive MS: clinical and MRI outcomes of a multicenter controlled trial. Cladribine MRI Study Group. Neurology 54:1145–1155

    PubMed  CAS  Google Scholar 

  121. Giovannoni G, Comi G, Cook S et al (2010) A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med 362:416–426

    Article  PubMed  CAS  Google Scholar 

  122. Hartung HP, Aktas O, Kieseier B et al (2010) Development of oral cladribine for the treatment of multiple sclerosis. J Neurol 257:163–170

    Article  PubMed  CAS  Google Scholar 

  123. Refusal of the marketing authorisation for Movectro (cladribine) (2011) http://www.ema.europa.eu/docs/en_GB/document_library/Summary_of_opinion_-_Initial_authorisation/human/001197/WC500101072.pdf. Accessed 24 January 2011

Download references

Acknowledgments

This review includes data presented by the authors during an expert meeting sponsored by Bayer Schering Pharma AG (Berlin, Germany) in Berlin, Germany on June 26, 2010. Editorial and medical writing support was provided by Physicians World Europe GmbH, (Mannheim, Germany), funded by Bayer Schering Pharma AG (Berlin, Germany). Bayer Schering Pharma AG had no role in data collection, data interpretation or writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Gold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duddy, M., Haghikia, A., Cocco, E. et al. Managing MS in a changing treatment landscape. J Neurol 258, 728–739 (2011). https://doi.org/10.1007/s00415-011-6009-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-011-6009-x

Keywords

Navigation