Skip to main content

Advertisement

Log in

Purely systemically active anti-inflammatory treatments are adequate to control multiple sclerosis

  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Collective evidence supports the notion that multiple sclerosis is principally an autoimmune disease. Much of it stems from models of experimental autoimmune encephalomyelitis, generated by inoculation of animals with central nervous system antigens such as MBP, PLP, S100 and MOG or peptides thereof. Different ways of immunization and different animal species and strains mirror different aspects of the neuropathology of multiple sclerosis, such as inflammation, demyelination or axonal damage, and reflect different clinical courses. In all these models, the first immune reactions take place in lymph nodes from which immune cells migrate into the circulation and then to the central nervous system. Adoptive transfer of myelin-reactive T cells from these animals produces pathology and disease in the central nervous system of naïve healthy recipients. In the human disease, autoreactive T and B cells specific for a variety of central antigens are present in the immune repertoire. These cells appear to be activated in the periphery through a number of mechanisms which causes them to home to the central nervous system. Contact with the local immune circuitry of the brain stimulates clonal expansion of autoreactive T cells, initiating a cascade of immuno-inflammatory events in situ. Numerous ways of disrupting this complex sequence of events, either by non-specific immunosuppression or by targeting specific checkpoints, abrogate or ameliorate disease in animal models. All approved disease-modifying drugs have an impact on components of the systemic immune compartment. All have been shown to reduce the number of gadolinium-enhancing T1 lesions observed with magnetic resonance imaging, an index of acute inflammatory invasion of the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adelman B, Sandrock A, Panzara MA (2005) Natalizumab and progressive multifocal leukoencephalopathy. N Engl J Med 353(4):432–433

    Article  PubMed  Google Scholar 

  2. Aharoni R, Teitelbaum D, Leitner O, Meshorer A, Sela M, Arnon R (2000) Specific Th2 cells accumulate in the central nervous system of mice protected against experimental autoimmune encephalomyelitis by copolymer 1. Proc Natl Acad Sci 97:11472–11477

    Article  PubMed  Google Scholar 

  3. Aharoni R, Teitelbaum D, Sela M, Arnon R (1998) Bystander suppression of experimental autoimmune encephalomyelitis by T cell lines and clones of the Th2 type induced by copolymer 1. J Neuroimmunol 91:135–146

    Article  PubMed  Google Scholar 

  4. Aharoni R, Teitelbaum D, Sela M, Arnon R (1997) Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci 94:10821–10826

    Article  PubMed  Google Scholar 

  5. Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, Hohlfeld R, Friese M, Schroder R, Deckert M, Schmidt S, Ravid R, Rajewsky K (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192:393–404

    Article  PubMed  Google Scholar 

  6. Ben-Nun A, Wekerle H, Cohen IR (1981) The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol 11:195–199

    PubMed  Google Scholar 

  7. Berger T, Rubner P, Schautzer F, Egg R, Ulmer H, Mayringer I, Dilitz E, Deisenhammer F, Reindl M (2003) Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med 349:139–145

    Article  PubMed  Google Scholar 

  8. Billiau A, Kieseier BC, Hartung HP (2004) Biologic role of interferon beta in multiple sclerosis. J Neurol 251(Suppl 2):II10–II14

    Article  PubMed  Google Scholar 

  9. Cepok S, Jacobsen M, Schock S, Omer B, Jaekel S, Boddeker I, Oertel WH, Sommer N, Hemmer B (2001) Patterns of cerebrospinal fluid pathology correlate with disease progression in multiple sclerosis. Brain 124:2169–2176

    Article  PubMed  Google Scholar 

  10. Cepok S, Rosche B, Grummel V, Vogel F, Zhou D, Sayn J, Sommer N, Hartung HP, Hemmer B (2005) Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain 128(Pt 7):1667–1676

    Article  PubMed  Google Scholar 

  11. Cepok S, Zhou D, Srivastava R, Nessler S, Stei S, Bussow K, Sommer N, Hemmer B (2005) Identification of Epstein-Barr virus proteins as putative targets of the immune response in multiple sclerosis. J Clin Invest 115:1352–1360

    Article  PubMed  Google Scholar 

  12. Coles AJ, Wing MG, Molyneux P, Paolillo A, Davie CM, Hale G, Miller D, Waldmann H, Compston A (1999) Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol 46:296–304

    Article  PubMed  Google Scholar 

  13. Cree BA, Lamb S, Morgan K, Chen A, Waubant E, Genain C (2005) An open label study of the effects of rituximab in neuromyelitis optica. Neurology 64:1270–1272

    PubMed  Google Scholar 

  14. Edan G, Miller D, Clanet M, Confavreux C, Lyon-Caen O, Lubetzki C, Brochet B, Berry I, Rolland Y, Froment JC, Cabanis E, Iba-Zizen MT, Gandon JM, Lai HM, Moseley I, Sabouraud O (1997) Therapeutic effect of mitoxantrone combined with methylprednisolone in multiple sclerosis: a randomized multicentre study of active disease using MRI and clinical criteria. J Neurol Neurosurg Psychiatry 62:112–118

    PubMed  Google Scholar 

  15. Egg R, Reindl M, Deisenhammer F, Linington C, Berger T (2001) Anti-MOG and anti-MBP antibody subclasses in multiple sclerosis. Mult Scler 7:285–289

    Article  PubMed  Google Scholar 

  16. Ford ML, Evavold BD (2005) Specificity, magnitude, and kinetics of MOG-specific CD8 + T cell responses during experimental autoimmune encephalomyelitis. Eur J Immunol 35:76–85

    Article  PubMed  Google Scholar 

  17. Fox EJ (2004) Mechanism of action of mitoxantrone. Neurology 63(Suppl 6):S15–S18

    PubMed  Google Scholar 

  18. Genain CP, Cannella B, Hauser SL, Raine CS (1999) Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 5:170–175

    Article  PubMed  Google Scholar 

  19. Hartung HP, Gonsette R, Konig N, Kwiecinski H, Guseo A, Morrissey SP, Krapf H, Zwingers T (2002) Mitoxantrone in Multiple Sclerosis Study Group (MIMS).Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360:2018–2025

    Article  PubMed  Google Scholar 

  20. Hartung HP, Kieseier BC (1996) Targets for the therapeutic action of interferon-beta in multiple sclerosis. Ann Neurol 40:825–826

    Article  PubMed  Google Scholar 

  21. Hemmer B, Archelos JJ, Hartung HP (2002) New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci 3:291–301

    Article  PubMed  Google Scholar 

  22. Hohlfeld R, Wekerle H (2004) Autoimmune concepts of multiple sclerosis as a basis for selective immunotherapy: from pipe dreams to (therapeutic) pipelines. Proc Natl Acad Sci 101(Suppl 2):14599–14606

    Article  PubMed  Google Scholar 

  23. Hong J, Li N, Zhang X, Zheng B, Zhang JZ (2005) Induction of CD4 + CD25 + regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc Natl Acad Sci 102:6449–6454

    Article  PubMed  Google Scholar 

  24. Huseby ES, Liggitt D, Brabb T, Schnabel B, Ohlen C, Goverman J (2001) A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J Exp Med 194:669–676

    Article  PubMed  Google Scholar 

  25. Jacobsen M, Cepok S, Quak E, Happel M, Gaber R, Ziegler A, Schock S, Oertel WH, Sommer N, Hemmer B (2002) Oligoclonal expansion of memory CD8 + T cells in cerebrospinal fluid from multiple sclerosis patients. Brain 125:538–550

    Article  PubMed  Google Scholar 

  26. Kerschensteiner M, Stadelmann C, Dechant G, Wekerle H, Hohlfeld R (2003) Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann Neurol 53:292–304

    Article  PubMed  Google Scholar 

  27. Kieseier BC, Hemmer B, Hartung HP (2005) Multiple sclerosis–novel insights and new therapeutic strategies. Curr Opin Neurol 18:211–220

    Article  PubMed  Google Scholar 

  28. Lang HL, Jacobsen H, Ikemizu S, Andersson C,Harlos K, Madsen L, Hjorth P, Sondergaard L, Svejgaard A, Wucherpfennig K, Stuart DI, Bell JI, Jones EY, Fugger L (2002) A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol 3:940–943

    Article  PubMed  Google Scholar 

  29. Miller A, Shapiro S, Gershtein R, Kinarty A, Rawashdeh H, Honigman S, Lahat N (1998) Treatment of multiple sclerosis with copolymer-1 (Copaxone): implicating mechanisms of Th1 to Th2/Th3 immune-deviation. J Neuroimmunol 92:113–121

    Article  PubMed  Google Scholar 

  30. Monson NL, Cravens PD, Frohman EM, Hawker K, Racke MK (2005) Effect of rituximab on the peripheral blood and cerebrospinal fluid B cells in patients with primary progressive multiple sclerosis. Arch Neurol 62:258–264

    Article  PubMed  Google Scholar 

  31. Munch M, Riisom K, Christensen T, Moller-Larsen A, Haahr S (1998) The significance of Epstein-Barr virus seropositivity in multiple sclerosis patients? Acta Neurol Scand 97:171–174

    PubMed  Google Scholar 

  32. Neuhaus O, Archelos JJ, Hartung HP (2003) Immunomodulation in multiple sclerosis: from immunosuppression to neuroprotection. Trends Pharmacol Sci 24:131–138

    Article  PubMed  Google Scholar 

  33. Neuhaus O, Farina C, Wekerle H, Hohlfeld R (2001) Mechanisms of action of glatiramer acetate in multiple sclerosis. Neurology 56:702–708

    PubMed  Google Scholar 

  34. Neuhaus O, Farina C, Yassouridis A, Wiendl H, Then Bergh F, Dose T, Wekerle H, Hohlfeld R (2000) Multiple sclerosis: comparison of copolymer-1-reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci U S A 97:7452–457

    Article  PubMed  Google Scholar 

  35. Neuhaus O, Kieseier BC, Hartung HP (2004) Mechanisms of mitoxantrone in multiple sclerosis–what is known? J Neurol Sci 223:25–27

    Article  PubMed  Google Scholar 

  36. Offner H, Hashim GA, Chou YK, Celnik B, Jones R, Vandenbark AA (1988) Encephalitogenic T cell clones with variant receptor specificity. J Immunol 141:3828–3832

    PubMed  Google Scholar 

  37. Oldstone MB (1987) Molecular mimicry and autoimmune disease. Cell 50:819–820

    Article  PubMed  Google Scholar 

  38. Pette M, Fujita K, Kitze B, Whitaker JN, Albert E, Kappos L, Wekerle H (1990) Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology 40:1770–1776

    PubMed  Google Scholar 

  39. Pette M, Fujita K, Wilkinson D, Altmann DM, Trowsdale J, Giegerich G, Hinkkanen A, Epplen JT, Kappos L, Wekerle H (1990) Myelin autoreactivity in multiple sclerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple sclerosis patients and healthy donors. Proc Natl Acad Sci U S A 87:7968–7972

    PubMed  Google Scholar 

  40. Reindl M, Linington C, Brehm U, Egg R, Dilitz E, Deisenhammer F, Poewe W, Berger T (1999) Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. Brain 122:2047–2056

    Article  PubMed  Google Scholar 

  41. Rudick RA, Sandrock A (2004) Natalizumab: alpha4-integrin antagonist selective adhesion molecule inhibitors for MS. Expert Rev Neurother 4:571–580

    Article  PubMed  Google Scholar 

  42. Skulina C, Schmidt S, Dornmair K, Babbe H, Roers A, Rajewsky K, Wekerle H, Hohlfeld R, Goebels N (2004) Multiple sclerosis: brain-infiltrating CD8 + T cells persist as clonal expansions in the cerebrospinal fluid and blood. Proc Natl Acad Sci 101:2428–2433

    Article  PubMed  Google Scholar 

  43. Sormani MP, Rovaris M, Valsasina P, Wolinsky JS, Comi G, Filippi M (2004) Measurement error of two different techniques for brain atrophy assessment in multiple sclerosis. Neurology 62:1432–1434

    PubMed  Google Scholar 

  44. Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747

    Article  PubMed  Google Scholar 

  45. Steinman L (2005) Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab. Nat Rev Drug Discov 4:510–518

    Article  PubMed  Google Scholar 

  46. Steinman L (2000) Multiple approaches to multiple sclerosis. Nat Med 6:15–16

    Article  PubMed  Google Scholar 

  47. Stüve O, Cepok S, Elias B, Saleh A, Hartung HP, Hemmer B, Kieseier BC (2005) Clinical stabilization and effective B cell depletion in the cerebrospinal fluid and peripheral blood in a patient with fulminant relapsing remitting multiple sclerosis. Arch Neurol (in press)

  48. Sun D, Whitaker JN, Huang Z, Liu D, Coleclough C, Wekerle H, Raine CS (2001) Myelin antigen-specific CD8 + T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J Immunol 166:7579–7587

    PubMed  Google Scholar 

  49. Villar LM, Masjuan J, Gonzalez-Porque P, Plaza J, Sadaba MC, Roldan E, Bootello A, Alvarez-Cermeno JC (2003) Intrathecal IgM synthesis is a prognostic factor in multiple sclerosis. Ann Neurol 53:222–226

    Article  PubMed  Google Scholar 

  50. Villar LM, Sadaba MC, Roldan E, Masjuan J, Gonzalez-Porque P, Villarrubia N, Espino M, Garcia-Trujillo JA, Bootello A, Alvarez-Cermeno JC (2005) Intrathecal synthesis of oligoclonal IgM against myelin lipids predicts an aggressive disease course in MSJ Clin Invest 115:187–194

    Article  Google Scholar 

  51. von Herrath MG, Harrison LC (2003) Antigen-induced regulatory T cells in autoimmunity. Nat Rev Immunol 3:223–232

    Article  PubMed  Google Scholar 

  52. Weinstock-Guttman B, Jacobs LD (2000) What is new in the treatment of multiple sclerosis? Drugs 59:401–410

    PubMed  Google Scholar 

  53. Wekerle H (1993) Experimental autoimmune encephalomyelitis as a model of immune-mediated CNS disease. Curr Opin Neurobiol 3:779–784

    Article  PubMed  Google Scholar 

  54. Wolinsky JS (2004) Glatiramer acetate for the treatment of multiple sclerosis. Expert Opin Pharmacother 5:875–891

    Article  PubMed  Google Scholar 

  55. Ziemssen T (2004) Neuroprotection and glatiramer acetate: the possible role in the treatment of multiple sclerosis. Adv Exp Med Biol 541:111–134

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Peter Hartung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartung, HP., Kieseier, B.C. & Hemmer, B. Purely systemically active anti-inflammatory treatments are adequate to control multiple sclerosis. J Neurol 252 (Suppl 5), v30–v37 (2005). https://doi.org/10.1007/s00415-005-5006-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-005-5006-3

Key words

Navigation