Skip to main content
Log in

Petrogenesis of Sierra Nevada plutons inferred from the Sr, Nd, and O isotopic signatures of mafic igneous complexes in Yosemite Valley, California

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Mafic complexes in the central Sierra Nevada batholith record valuable geochemical information regarding the role mafic magmas play in arc magmatism and the generation of continental crust. In the intrusive suite of Yosemite Valley, major and trace element compositions of the hornblende-bearing gabbroic rocks from the Rockslides mafic complex and of the mafic dikes in the North America Wall are compositionally similar to high-alumina basalt. Of these rocks, two samples have higher Ni and Cr abundances as well as higher εNd values than previously recognized for the intrusive suite. Plagioclase crystals in rocks from the North America Wall and the Rockslides have prominent calcic cores and sharply defined sodic rims, a texture commonly associated with mixing of mafic and felsic magmas. In situ analyses of 87Sr/86Sr in plagioclase show no significant isotopic difference from the cores to the rims of these grains. We propose that the high 87Sr/86Sr (~0.7067) and low εNd (~−3.4) of bulk rocks, the homogeneity of 87Sr/86Sr in plagioclase, and the high δ18O values of bulk rocks (6.6–7.3 ‰) and zircon (Lackey et al. in J Petrol 49:1397–1426, 2008) demonstrate that continental crust was assimilated into the sublithospheric mantle-derived basaltic precursors of the mafic rocks in Yosemite Valley. Contamination (20–40 %) likely occurred in the lower crust as the magma differentiated to high-alumina basalt prior to plagioclase (and zircon) crystallization. As a consequence, the isotopic signatures recorded by whole rocks, plagioclase, and zircon do not represent the composition of the underlying lithospheric mantle. We conclude that the mafic and associated felsic members of the intrusive suite of Yosemite Valley represent 60–80 % new additions to the crust and include significant quantities of recycled ancient crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ague JJ, Brimhall GH (1988) Magmatic arc asymmetry and distribution of anomalous plutonic belts in the batholiths of California: effects of assimilation, crustal thickness, and depth of crystallization. Geol Soc Am Bull 100:912–927

    Article  Google Scholar 

  • Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Miner 83:1127–1132

    Google Scholar 

  • Bacon CR, Bruggman PE, Christiansen RL, Clynne MA, Donnelly-Nolan JM, Hildreth W (1997) Primitive magmas at five Cascade volcanic fields; melts from hot, heterogeneous sub-arc mantle. Can Mineral 35:397–423

    Google Scholar 

  • Bailey RA (2004) Eruptive history and chemical evolution of the precaldera and postcaldera basalt-dacite sequences, Long Valley, California: implications for magma sources, current seismic unrest, and future volcanism, US Dept. of the Interior, US Geological Survey

  • Barbarin B (1990) Plagioclase xenocrysts and mafic magmatic enclaves in some granitoids of the Sierra Nevada Batholith, California. J Geophys Res 95:17747–17756

    Article  Google Scholar 

  • Barbarin B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80:155–177

    Article  Google Scholar 

  • Bateman PC, Chappell BW (1979) Crystallization, fractionation, and solidification of the Tuolumne Intrusive Series, Yosemite National Park, California. Geol Soc Am Bull 90:465–482

    Article  Google Scholar 

  • Beard BL, Glazner AF (1995) Trace element and Sr and Nd isotopic composition of mantle xenoliths from the Big Pine volcanic field, California. J Geophys Res 100:4169–4179

    Article  Google Scholar 

  • Beard BL, Johnson CM (1997) Hafnium isotope evidence for the origin of Cenozoic basaltic lavas from the southwestern United States. J Geophys Res 102:20149–20178

    Article  Google Scholar 

  • Bindeman IN, Eiler JM, Yogodzinski GM, Tatsumi Y, Stern CR, Grove TL, Portnyagin M, Hoernle K, Danyushevsky LV (2005) Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth Planet Sci Lett 235:480–496

    Article  Google Scholar 

  • Castro A (2001) Plagioclase morphologies in assimilation experiments. Implications for disequilibrium melting in the generation of granodiorite rocks. Min Petrol 71:31–49

    Article  Google Scholar 

  • Chazot G, Lowry D, Menzies M, Mattey D (1997) Oxygen isotopic composition of hydrous and anhydrous mantle peridotites. Geochim Cosmochim Acta 61:161–169

    Article  Google Scholar 

  • Cherniak DJ (2002) Ba diffusion in feldspar. Geochim Cosmochim Acta 66:1641–1650

    Article  Google Scholar 

  • Cherniak DJ, Watson EB (1992) A study of strontium diffusion in K-feldspar, Na-K feldspar and anorthite using Rutherford backscattering spectroscopy. Earth Planet Sci Lett 113:411–425

    Article  Google Scholar 

  • Cherniak DJ, Watson EB (1994) A study of strontium diffusion in plagioclase using Rutherford backscattering spectroscopy. Geochim Cosmochim Acta 58:5179–5190

    Article  Google Scholar 

  • Coleman DS, Glazner AF (1997) The sierra crest magmatic event: rapid formation of juvenile crust during the late cretaceous in California. Int Geol Rev 39:768–787

    Article  Google Scholar 

  • Coleman DS, Walker JD (1992) Evidence for the generation of juvenile granitic crust during continental extension, mineral mountains Batholith, Utah. J Geophys Res 97:11011–11024

    Article  Google Scholar 

  • Coleman DS, Glazner AF, Frost TP (1992) Evidence from the Lamarck granodiorite for rapid late cretaceous crust formation in California. Science 258:1924–1926

    Article  Google Scholar 

  • Coleman DS, Glazner AF, Miller JS, Bradford KJ, Frost TP, Joye JL, Bachl CA (1995) Exposure of a late Cretaceous layered mafic-felsic magma system in the central Sierra Nevada batholith, California. Contrib Mineral Petrol 120:129–136

    Article  Google Scholar 

  • Coleman DS, Gray W, Glazner AF (2004) Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32:433–436

    Article  Google Scholar 

  • Crawford AJ, Falloon TJ, Eggins S (1987) The origin of island arc high-alumina basalts. Contrib Mineral Petrol 97:417–430

    Article  Google Scholar 

  • Davidson J, Tepley Iii F, Palacz Z, Meffan-Main S (2001) Magma recharge, contamination and residence times revealed by in situ laser ablation isotopic analysis of feldspar in volcanic rocks. Earth Planet Sci Lett 184:427–442

    Article  Google Scholar 

  • DePaolo DJ (1981) A neodymium and strontium isotopic study of the Mesozoic Calc-Alkaline Granitic Batholiths of the Sierra Nevada and peninsular ranges, California. J Geophys Res 86:10470–10488

    Article  Google Scholar 

  • Dodge FCW, Lockwood JP, Calk LC (1988) Fragments of the mantle and crust from beneath the Sierra Nevada batholith: xenoliths in a volcanic pipe near Big Creek, California. Geol Soc Am Bull 100:938–947

    Article  Google Scholar 

  • Domenick MA, Kistler RW, Dodge FCW, Tatsumoto M (1983) Nd and Sr isotopic study of crustal and mantle inclusions from the Sierra Nevada and implications for batholith petrogenesis. Geol Soc Am Bull 94:713–719

    Article  Google Scholar 

  • Dorais MJ, Whitney JA, Roden MF (1990) Origin of Mafic Enclaves in the Dinkey Creek Pluton, Central Sierra Nevada Batholith, California. J Petrol 31:853–881

    Article  Google Scholar 

  • Draper DS (1991) Late cenozoic bimodal magmatism in the northern basin and range province of southeastern Oregon. J Volcanol Geoth Res 47:299–328

    Article  Google Scholar 

  • Ducea M (2001) The California arc: thick granitic batholiths, eclogitic residues, lithospheric-scale thrusting, and magmatic flare-ups. GSA Today 11:4–10

    Article  Google Scholar 

  • Ducea MN, Saleeby JB (1996) Buoyancy sources for a large, unrooted mountain range, the Sierra Nevada, California: evidence from xenolith thermobarometry. J Geophys Res 101:8229–8244

    Article  Google Scholar 

  • Eiler JM, Schiano P, Kitchen N, Stolper EM (2000) Oxygen-isotope evidence for recycled crust in the sources of mid-ocean-ridge basalts. Nature 403:530–534

    Article  Google Scholar 

  • Eiler JM, Schiano P, Valley JW, Kita NT, Stolper EM (2007) Oxygen-isotope and trace element constraints on the origins of silica-rich melts in the subarc mantle. Geochem Geophys Geosyst 8:Q09012

    Article  Google Scholar 

  • Elliott T (2003) Tracers in the Slab. In: Eiler J (ed) Inside the subduction factory, vol 138. AGU, Washington, p 311

    Chapter  Google Scholar 

  • Ewart E (1982) The minerology and petrology of Tertiary-recent orogenic volcanic rocks with special reference to the andesit-basaltic compositional range. In: Thorpe RS (ed) Andesites. Wiley, New York City, pp 25–95

    Google Scholar 

  • Farmer GL, Perry FV, Semken S, Crowe B, Curtis D, DePaolo DJ (1989) Isotopic evidence on the structure and origin of subcontinental lithospheric mantle in Southern Nevada. J Geophys Res 94:7885–7898

    Article  Google Scholar 

  • Frazer RE, Lackey JS, Valencia VA (2009) New U-Pb zircon ages of the granites of dinkey dome: reexamining the origins of the shaver intrusive suite. Geol Soc Am Abs Prog 41:5

    Google Scholar 

  • Frost TP, Mahood GA (1987) Field, chemical, and physical constraints on mafic-felsic magma interaction in the Lamarck Granodiorite, Sierra Nevada, California. Geol Soc Am Bull 99:272–291

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor HP Jr (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14:4–11

    Article  Google Scholar 

  • Goldstein SL (1988) Decoupled evolution of Nd and Sr isotopes in the continental crust and the mantle. Nature 336:733–738

    Article  Google Scholar 

  • Goldstein EB, Peck WH, Lackey JS (2005) Mafic rocks of Hall Mountain, central Sierra Nevada batholith, California. Geol Soc Am Abs Prog 37:47

    Google Scholar 

  • Grove T, Gerlach D, Sando T (1982) Origin of calc-alkaline series lavas at Medicine Lake Volcano by fractionation, assimilation and mixing. Contrib Mineral Petrol 80:160–182

    Article  Google Scholar 

  • Grove TL, Ferry JM, Spear FS (1983) Phase transitions and decomposition relations in calcic plagioclase. Am Miner 68:41–59

    Google Scholar 

  • Grove TL, Baker MB, Kinzler RJ (1984) Coupled CaAl-NaSi diffusion in plagioclase feldspar: experiments and applications to cooling rate speedometry. Geochim Cosmochim Acta 48:2113–2121

    Article  Google Scholar 

  • Halliday AN, Stephens WE (1984) Crustal controls on the genesis of the 400 Ma old Caledonian granites. Phys Earth Platet Interior 35:89–104

    Article  Google Scholar 

  • Harrison TM, Clarke GKC (1979) A model of the thermal effects of igneous intrusion and uplift as applied to Quottoon pluton, British Columbia. Can J Earth Sci 16:411–420

    Article  Google Scholar 

  • Hart WK, Aronson JL, Mertzman SA (1984) Areal distribution and age of low-K, high-alumina olivine tholeiite magmatism in the northwestern Great Basin. Geol Soc Am Bull 95:186–195

    Article  Google Scholar 

  • Hibbard MJ (1995) Petrography to petrogenesis. Prentice Hall, New Jersey

    Google Scholar 

  • Holden P, Halliday AN, Stephens WE (1987) Neodymium and strontium isotope content of microdiorite enclaves points to mantle input to granitoid production. Nature 330:53–56

    Article  Google Scholar 

  • Kay SM, Kay RW (1994) Aleutian magmas in space and time. In: Plafker G, Berg HC (eds) The Geology of Alaska. Geological Society of America, Boulder, pp 687–722

    Google Scholar 

  • Kelemen PB, Johnson KTM, Kinzler RJ, Irving AJ (1990) High-field-strength element depletions in arc basalts due to mantle–magma interaction. Nature 345:521–524

    Article  Google Scholar 

  • Kelemen PB, Yogodzinski GM, Scholl DW (2003) Along-strike variation in the Aleutian island arc: genesis of high Mg# andesite and implications for continental crust. In: Eiler J (ed) Inside the subduction factory, vol 138. AGU, Washington, p 311

    Google Scholar 

  • Kistler RW (1990) Two different lithosphere types in the Sierra Nevada, California. In: Anderson L (ed) The nature and origin of cordilleran magmatism, vol 174. Geological Society of America Memroirs, pp 271–281

  • Kistler RW, Peterman ZE (1973) Variations in Sr, Rb, K, Na, and Initial 87Sr/86Sr in Mesozoic Granitic Rocks and Intruded Wall Rocks in Central California. Geol Soc Am Bull 84:3489–3512

    Article  Google Scholar 

  • Kistler RW, Chappell BW, Peck DL, Bateman PC (1986) Isotopic variation in the Tuolumne Intrusive Suite, central Sierra Nevada, California. Contrib Mineral Petrol 94:205–220

    Article  Google Scholar 

  • Lackey JS, Valley JW, Saleeby JB (2005) Supracrustal input to magmas in the deep crust of Sierra Nevada batholith: evidence from high-δ18O zircon. Earth Planet Sci Lett 235:315–330

    Article  Google Scholar 

  • Lackey J, Valley J, Hinke H (2006) Deciphering the source and contamination history of peraluminous magmas using δ18O of accessory minerals: examples from garnet-bearing plutons of the Sierra Nevada batholith. Contrib Mineral Petrol 151:20–44

    Article  Google Scholar 

  • Lackey JS, Valley JW, Chen JH, Stockli DF (2008) Dynamic magma systems, crustal recycling, and alteration in the central Sierra Nevada batholith: the oxygen isotope record. J Petrol 49:1397–1426

    Article  Google Scholar 

  • Lackey JS, Cecil MR, Windham CJ, Frazer RE, Bindeman IN, Gehrels GE (2012) The fine gold intrusive suite: the roles of basement terranes and magma source development in the Early Cretaceous Sierra Nevada batholith. Geosphere 8:292–313

    Article  Google Scholar 

  • Lange RA, Carmichael ISE, Renne PR (1993) Potassic volcanism near mono basin, California: evidence for high water and oxygen fugacities inherited from subduction. Geology 21:949–952

    Article  Google Scholar 

  • Le Maitre RW (1989) A classification of igneous rocks and glossary of terms. Blackwell Scientific, Oxford

    Google Scholar 

  • Lee C-T, Rudnick RL, Brimhall GH Jr (2001) Deep lithospheric dynamics beneath the Sierra Nevada during the Mesozoic and Cenozoic as inferred from xenolith petrology. Geochem Geophys Geosyst 2:12. doi:10.1029/2001gc000152

    Google Scholar 

  • Mattey D, Lowry D, Macpherson C (1994) Oxygen isotope composition of mantle peridotite. Earth Planet Sci Lett 128:231–241

    Article  Google Scholar 

  • McCulloch MT, Chappell BW (1982) Nd isotopic characteristics of S- and I-type granites. Earth Planet Sci Lett 58:51–64

    Article  Google Scholar 

  • Memeti V, Paterson S, Matzel J, Mundil R, Okaya D (2010) Magmatic lobes as “snapshots” of magma chamber growth and evolution in large, composite batholiths: an example from the Tuolumne intrusion, Sierra Nevada, California. Geol Soc Am Bull 122:1912–1931

    Article  Google Scholar 

  • Menzies MA (1989) Cratonic, circumcratonic and oceanic mantle domains beneath the Western United States. J Geophys Res 94:7899–7915

    Article  Google Scholar 

  • Menzies MA, Leeman WP, Hawkesworth CJ (1983) Isotope geochemistry of Cenozoic volcanic rocks reveals mantle heterogeneity below western USA. Nature 303:205–209

    Article  Google Scholar 

  • Mills R, Glazner A, Coleman D (2009) Scale of pluton/wall rock interaction near May Lake, Yosemite National Park, CA, USA. Contrib Mineral Petrol 158:263–281

    Article  Google Scholar 

  • Mukhopadhyay B, Manton WI (1994) Upper-mantle fragments from beneath the Sierra Nevada Batholith: partial fusion, fractional crystallization, and metasomatism in a subduction related ancient lithosphere. J Petrol 35:1417–1450

    Article  Google Scholar 

  • Naney MT (1983) Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. Am J Sci 283:993–1033

    Article  Google Scholar 

  • Nelson ST, Montana A (1992) Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. Am Miner 77:1242–1249

    Google Scholar 

  • Ormerod D, Rogers N, Hawkesworth C (1991) Melting in the lithospheric mantle: inverse modelling of alkali-olivine basalts from the Big Pine Volcanic Field, California. Contrib Mineral Petrol 108:305–317

    Article  Google Scholar 

  • Presnall DC, Bateman PC (1973) Fusion relations in the system NaAlSi3O8-CaAl2Si2O8-KAlSi3O8-SiO2-H2O and generation of granitic magmas in the Sierra Nevada Batholith. Geol Soc Am Bull 84:3181–3202

    Article  Google Scholar 

  • Ramos FC, Wolff JA, Tollstrup DL (2004) Measuring 87Sr/86Sr variations in minerals and groundmass from basalts using LA-MC-ICPMS. Chem Geol 211:135–158

    Article  Google Scholar 

  • Ratajeski K (1999) Field, geochemical, and experimental study of mafic to felsic plutonic rocks associated with the intrusive suite of Yosemite Valley. University of North Carolina, Chapel Hill

    Google Scholar 

  • Ratajeski K, Glazner AF, Miller BV (2001) Geology and geochemistry of mafic to felsic plutonic rocks in the cretaceous intrusive suite of Yosemite Valley, California. Geol Soc Am Bull 113:1485–1602

    Article  Google Scholar 

  • Ratajeski K, Sisson T, Glazner A (2005) Experimental and geochemical evidence for derivation of the El Capitan Granite, California, by partial melting of hydrous gabbroic lower crust. Contrib Mineral Petrol 149:713–734

    Article  Google Scholar 

  • Reid JB Jr, Evans OC, Fates DG (1983) Magma mixing in granitic rocks of the central Sierra Nevada, California. Earth Planet Sci Lett 66:243–261

    Article  Google Scholar 

  • Reiners PW, Nelson BK, Ghiorso MS (1995) Assimilation of felsic crust by basaltic magma: thermal limits and extents of crustal contamination of mantle-derived magmas. Geology 23:563–566

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Heinrich DH, Karl KT (eds) Treatise on geochemistry. Pergamon, Oxford, pp 1–64

    Chapter  Google Scholar 

  • Saleeby JB (1986) C-2: Central California offshore to the Colorado Plateau, Centennial Continent/Ocean Transect 10, Corridor. In., Boulder, 63

  • Saleeby JB, Ducea MN, Busby CJ, Nadin ES, Wetmore PH (2008) Chronology of pluton emplacement and regional deformation in the southern Sierra Nevada batholith, California. Geol Soc Am Spec Pap 438:397–427

    Google Scholar 

  • Sisson TW, Grove TL (1993a) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166

    Article  Google Scholar 

  • Sisson TW, Grove TL (1993b) Temperatures and H2O contents of low-MgO high-alumina basalts. Contrib Mineral Petrol 113:167–184

    Article  Google Scholar 

  • Sisson TW, Grove TL, Coleman DS (1996) Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contrib Mineral Petrol 126:81–108

    Article  Google Scholar 

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148:635–661

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc London Spec Pub 42:313–345

    Article  Google Scholar 

  • Tatsumi Y, Eggins S (1995) Subduction zone magmatism. Blackwell Science, Oxford

    Google Scholar 

  • Tepley FJ, Davidson JP (2003) Mineral-scale Sr-isotope constraints on magma evolution and chamber dynamics in the Rum layered intrusion, Scotland. Contrib Mineral Petrol 145:628–641

    Article  Google Scholar 

  • Tepley FJ, Davidson JP, Clynne MA (1999) Magmatic interactions as recorded in plagioclase phenocrysts of Chaos Crags, Lassen Volcanic Center, California. J Petrol 40:787–806

    Article  Google Scholar 

  • Tepley FJ, Davidson JP, Tilling RI, Arth JG (2000) Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichón Volcano, Mexico. J Petrol 41:1397–1411

    Article  Google Scholar 

  • Valley JW (2003) Oxygen isotopes in Zircon. Rev Min Geochem 53:343–385

    Article  Google Scholar 

  • Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral Petrol 133:1–11

    Article  Google Scholar 

  • Van Kooten GK (1980) Mineralogy, petrology, and geochemistry of an ultrapotassic basaltic suite, Central Sierra Nevada, California, USA. J Petrol 21:651–684

    Article  Google Scholar 

  • Wenner JM, Coleman DS (2004) Magma Mixing and cretaceous crustal growth: geology and geochemistry of granites in the Central Sierra Nevada Batholith, California. Int Geol Rev 46:880–903

    Article  Google Scholar 

  • Zellmer GF, Sparks RSJ, Hawkesworth CJ, Wiedenbeck M (2003) Magma emplacement and remobilization timescales beneath montserrat: insights from Sr and Ba zonation in plagioclase phenocrysts. J Petrol 44:1413–1431

    Article  Google Scholar 

Download references

Acknowledgments

We thank Lang Farmer for his assistance with the microdrilling and 87Sr/86Sr analyses of plagioclase. We are grateful to Steven Nelson and Rick Carlson for insightful conversations and commentary given during the writing of this manuscript. Jade Star Lackey and Tom Sisson provided helpful reviews that greatly improved the discussion of the data. The College of Physical and Mathematical Sciences at Brigham Young University funded this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy R. Nelson.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 682 kb)

Supplementary material 2 (PDF 9859 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, W.R., Dorais, M.J., Christiansen, E.H. et al. Petrogenesis of Sierra Nevada plutons inferred from the Sr, Nd, and O isotopic signatures of mafic igneous complexes in Yosemite Valley, California. Contrib Mineral Petrol 165, 397–417 (2013). https://doi.org/10.1007/s00410-012-0814-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0814-9

Keywords

Navigation