Skip to main content
Log in

Metamorphism of Greater and Lesser Himalayan rocks exposed in the Modi Khola valley, central Nepal

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Thermobarometric estimates for Lesser and Greater Himalayan rocks combined with detailed structural mapping in the Modi Khola valley of central Nepal reveal that large displacement thrust-sense and normal-sense faults and ductile shear zones mostly control the spatial pattern of exposed metamorphic rocks. Individual shear zone- or fault-bounded domains contain rocks that record approximately the same peak metamorphic conditions and structurally higher thrust sheets carry higher grade rocks. This spatial pattern results from the kinematics of thrust-sense faults and shear zones, which usually place deeper, higher grade rocks on shallower, lower grade rocks. Lesser Himalayan rocks in the hanging wall of the Ramgarh thrust equilibrated at about 9 kbar and 580°C. There is a large increase in recorded pressures and temperatures across the Main Central thrust. Data presented here suggest the presence of a previously unrecognized normal fault entirely within Greater Himalayan strata, juxtaposing hanging wall rocks that equilibrated at about 11 kbar and 720°C against footwall rocks that equilibrated at about 15 kbar and 720°C. Normal faults occur at the structural top and within the Greater Himalayan series, as well as in Lesser Himalayan strata 175 and 1,900 m structurally below the base of the Greater Himalayan series. The major mineral assemblages in the samples collected from the Modi Khola valley record only one episode of metamorphism to the garnet zone or higher grades, although previously reported ca. 500 Ma concordant monazite inclusions in some Greater Himalayan garnets indicate pre-Cenozoic metamorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmad T, Harris N, Bickle M, Chapman H, Bunbury J, Prince C (2000) Isotopic constraints on the structural relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series, Garhwal Himalaya. Geol Soc Am Bull 112(3):467–477

    Article  Google Scholar 

  • Amatya KM, Jnawali BM (1994) Geological map of Nepal. Department of Mines and Geology, Government of Nepal, Scale 1:1,000,000

  • Arita K (1983) Origin of the inverted metamorphism of the Lower Himalayas, central Nepal. Tectonophysics 95(1–2):43–60

    Article  Google Scholar 

  • Beyssac O, Bollinger L, Avouac J-P, Goffe B (2004) Thermal metamorphism in the Lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material. Earth Planet Sci Lett 225:233–241. doi:10.1016/j.epsl.2004.05.023

    Article  Google Scholar 

  • Bollinger L, Avouac J-P, Beyssac O, Catlos EJ, Harrison TM, Grove M, Goffe B, Sapkota S (2004) Thermal structure and exhumation history of the Lesser Himalaya in central Nepal. Tectonics 23:TC5015. doi:10.1029/2003TC001564

  • Burchfiel BC, Chen Z, Hodges KV, Liu Y, Royden LH, Deng C, Xu J (1992) The South Tibetan detachment system, Himalayan orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geological Society of America Special Paper 269, 41 p

  • Burg JP, Chen GM (1984) Tectonics and structural zonation of southern Tibet, China. Nature 311(5983):219–223

    Article  Google Scholar 

  • Catlos EJ, Harrison TM, Kohn MJ, Grove M, Ryerson FJ, Manning CE, Upreti BN (2001) Geochronologic and thermobarometric constraints on the evolution of the Main Central Thrust, central Nepal Himalaya: Journal of Geophysical Research, B. Solid Earth Planets 106:16177–16204

    Article  Google Scholar 

  • Cawood PA, Johnson MRW, Nemchin AA (2007) Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth Planet Sci Lett 225:70–84. doi:10.1016/j.epsl.2006.12.006

    Article  Google Scholar 

  • Chakraborty S, Ganguly J (1991) Compositional zoning and cation diffusion in aluminosilicate garnets. In: Ganguly J (ed) Diffusion, atomic ordering and mass transport: advances in physical geochemistry, vol 8. Berlin, Springer, pp 120–175

    Google Scholar 

  • Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, NY, p 414

    Google Scholar 

  • Cygan RT, Lasaga AC (1985) Self-diffusion of magnesium in garnet at 750° to 900°C. Am J Sci 285:328–350

    Google Scholar 

  • Daniel CG, Hollister LS, Parrish RR, Grujic D (2003) Exhumation of the Main Central Thrust from lower crustal depths, eastern Bhutan Himalaya. J Metamorph Geol 21(4):317–334

    Google Scholar 

  • Dasgupta S, Ganguly J, Neogi S (2004) Inverted metamorphic sequence in the Sikkim Himalayas: crystallization history, P-T gradient and implications. J Metamorph Geol 22:395–412

    Article  Google Scholar 

  • Dasgupta S, Chakraborty S, Neogi S (2009) Petrology of an inverted Barrovian sequence of metapelites in Sikkim Himalaya, India: constraints on the tectonics of inversion. Am J Sci 309:43–84. doi:10.2475/01.2009.02

    Article  Google Scholar 

  • DeCelles PG, Gehrels GE, Quade J, Ojha TP (1998a) Eocene–early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal. Tectonics 17(5):741–765

    Article  Google Scholar 

  • DeCelles PG, Gehrels GE, Quade J, Ojha TP, Kapp PA, Upreti BN (1998b) Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold-thrust belt, western Nepal. Geol Soc Am Bull 110(1):2–21

    Article  Google Scholar 

  • DeCelles PG, Gehrels GE, Quade J, La Reau B, Spurlin M (2000) Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal. Science 288(5465):497–499

    Article  Google Scholar 

  • DeCelles PG, Robinson DM, Quade J, Ojha TP, Garzione CN, Copeland P, Upreti BN (2001) Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics 20:487–509

    Article  Google Scholar 

  • DeCelles PG, Gehrels GE, Najman Y, Martin AJ, Carter A, Garzanti E (2004) Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal: Implications for timing and diachroneity of initial Himalayan orogenesis. Earth Planet Sci Lett 227:313–330. doi:10.1016/j.epsl.2004.08.019

    Article  Google Scholar 

  • Dhital MR, Thapa PB, Ando H (2002) Geology of the inner Lesser Himalaya between Kusma and Syangja in western Nepal, vol 9. Bulletin of the Department of Geology, Tribhuvan University, Kathmandu, Nepal. pp 1–60

  • Elkins LT, Grove TL (1990) Ternary feldspar experiments and thermodynamic models. Am Mineral 75(5–6):544–559

    Google Scholar 

  • England P, Le Fort P, Molnar P, Pecher A (1992) Heat sources for Tertiary metamorphism and anatexis in the Annapurna-Manaslu region, central Nepal. J Geophys Res B Solid Earth Planets 97(2):2107–2128

    Article  Google Scholar 

  • Faccenda M, Gerya TV, Chakraborty S (2008) Styles of post-subduction collisional orogeny: influence of convergence velocity, crustal rheology and radiogenic heat production. Lithos 103:257–287. doi:10.1016/j.lithos.2007.09.009

    Article  Google Scholar 

  • Ferry JM, Spear FS (1978) Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib Mineral Petrol 66(2):113–117

    Article  Google Scholar 

  • Ganguly J (2002) Diffusion kinetics in minerals: Principles and applications to tectono-metamorphic processes. In: Gramaccioli CM (ed) Energy modeling in minerals. EMU notes in mineralogy, vol 4. pp 271–309

  • Ganguly J, Saxena SK (1987) Mixtures and mineral reactions. Springer, Berlin, p 291

  • Ganguly J, Tirone M (1999) Diffusion closure temperature and age of a mineral with arbitrary extent of diffusion: theoretical formulation and applications. Earth Planet Sci Lett 170:131–140

    Article  Google Scholar 

  • Ganguly J, Cheng W, Tirone M (1996a) Thermodynamics of aluminosilicate garnet solid solution: new experimental data, an optimized model, and thermometric applications. Contrib Mineral Petrol 126(1–2):137–151

    Article  Google Scholar 

  • Ganguly J, Chakraborty S, Sharp TG, Rumble D III (1996b) Constraint on the time scale of biotite-grade metamorphism during Acadian Orogeny from a natural garnet-garnet diffusion couple. Am Mineral 81(9–10):1208–1216

    Google Scholar 

  • Ganguly J, Cheng W, Chakraborty S (1998) Cation diffusion in aluminosilicate garnets: experimental determination in pyrope-almandine diffusion couples. Contrib Mineral Petrol 131:171–180

    Article  Google Scholar 

  • Ganguly J, Dasgupta S, Cheng W, Neogi S (2000) Exhumation history of a section of the Sikkim Himalayas, India: records in the metamorphic mineral equilibria and compositional zoning of garnet. Earth Planet Sci Lett 183:471–486

    Article  Google Scholar 

  • Gehrels GE, DeCelles PG, Martin A, Ojha TP, Pinhassi G, Upreti BN (2003) Initiation of the Himalayan Orogen as an early Paleozoic thin-skinned thrust belt. GSA Today 13(9):4–9

    Article  Google Scholar 

  • Gehrels GE, DeCelles PG, Ojha TP, Upreti BN (2006a) Geologic and U–Pb geochronologic evidence for early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya. J Asian Earth Sci 28:385–408. doi:10.1016/j.jseaes.2005.09.012

    Article  Google Scholar 

  • Gehrels GE, DeCelles PG, Ojha TP, Upreti BN (2006b) Geologic and U–Th–Pb geochronologic evidence for early Paleozoic tectonism in the Kathmandu thrust sheet, central Nepal Himalaya. Geol Soc Am Bull 118:185–198. doi:10.1130/B25753.1

    Google Scholar 

  • Goscombe B, Gray D, Hand M (2006) Crustal architecture of the Himalayan metamorphic front in eastern Nepal. Gondwana Res 10:232–255. doi:10.1016/j.gr.2006.05.003

    Article  Google Scholar 

  • Grujic D, Hollister LS, Parrish RR (2002) Himalayan metamorphic sequence as an orogenic channel: insight from Bhutan. Earth Planet Sci Lett 198(1–2):177–191

    Article  Google Scholar 

  • Guillot S (1999) An overview of the metamorphic evolution in central Nepal. J Asian Earth Sci 17:713–725

    Article  Google Scholar 

  • Hackler RT, Wood BJ (1989) Experimental determination of Fe and Mg exchange between garnet and olivine and estimation of Fe–Mg mixing properties in garnet. Am Mineral 74:994–999

    Google Scholar 

  • Harris N (2007) Channel flow and the Himalayan–Tibetan orogen: a critical review. J Geol Soc Lond 164:511–523

    Article  Google Scholar 

  • Harrison TM, Ryerson FJ, Le Fort P, Yin A, Lovera OM, Catlos EJ (1997) A late Miocene-Pliocene origin for the central Himalayan inverted metamorphism. Earth Planet Sci Lett 146:E1–E7

    Article  Google Scholar 

  • Harrison TM, Grove M, Lovera OM, Catlos EJ, D’Andrea J (1999) The origin of Himalayan anatexis and inverted metamorphism: models and constraints. J Asian Earth Sci 17:755–772

    Article  Google Scholar 

  • Heim A, Gansser A (1939) Central Himalaya: geological observations of the Swiss expedition 1936. Mem Swiss Soc Nat Sci 73:245

    Google Scholar 

  • Hodges KV, McKenna LW (1987) Realistic propagation of uncertainties in geologic thermobarometry. Am Mineral 72:671–680

    Google Scholar 

  • Hodges KV, Parrish RR, Searle MP (1996) Tectonic evolution of the central Annapurna Range, Nepalese Himalayas. Tectonics 15(6):1264–1291

    Article  Google Scholar 

  • Hoisch TD (1990) Empirical calibration of six geobarometers for the mineral assemblage quartz + muscovite + biotite + plagioclase + garnet. Contrib Mineral Petrol 104(2):225–234

    Article  Google Scholar 

  • Hoisch TD (1991) Equilibria within the mineral assemblage quartz + muscovite + biotite + garnet + plagioclase, and implications for the mixing properties of octahedrally-coordinated cations in muscovite and biotite. Contrib Mineral Petrol 108(1–2):43–54

    Article  Google Scholar 

  • Holdaway MJ, Mukhopadhyay B (1993) Geothermobarometry in pelitic schists: a rapidly evolving field. Am Mineral 78:681–693

    Google Scholar 

  • Holdaway MJ, Mukhopadhyay B, Dyar MD, Guidotti CV, Dutrow BL (1997) Garnet–biotite geothermometry revised: new Margules parameters and a natural specimen data set from Maine. Am Mineral 82(5–6):582–595

    Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Hooker JD (1854) Himalayan Journals. John Murray, London

    Google Scholar 

  • Jain AK, Manickavasagam RM (1993) Inverted metamorphism in the intracontinental ductile shear zone during Himalayan collision tectonics. Geology 21(5):407–410

    Article  Google Scholar 

  • Jamieson RA, Beaumont C, Hamilton J, Fullsack P (1996) Tectonic assembly of inverted metamorphic sequences. Geology 24:839–842. doi:10.1130/0091-7613(1996)024<0839:TAOIMS>2.3.CO;2

    Article  Google Scholar 

  • Jamieson RA, Beaumont C, Medvedev S, Nguyen MH (2004) Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen. J Geophys Res B Solid Earth 109:B06407. doi:10.1029/2003JB002811

  • Kerrick DM (1972) Experimental determination of muscovite + quartz stability with PH2O < Ptotal. Am J Sci 272:946–958

    Google Scholar 

  • Kohn MJ (2008) P-T-t data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan Sequence. Geol Soc Am Bull 120:259–273. doi:10.1130/B26252.1

    Article  Google Scholar 

  • Kohn MJ, Spear FS (1991) Error propagation for barometers: 2. Application to rocks. Am Mineral 76:138–147

    Google Scholar 

  • Kohn MJ, Spear F (2000) Retrograde net transfer reaction insurance for pressure-temperature estimates. Geology 28(12):1127–1130

    Article  Google Scholar 

  • Kohn MJ, Wieland M, Parkinson CD, Upreti BN (2004) Miocene faulting at plate tectonic velocity in the Himalaya of central Nepal. Earth Planet Sci Lett 228:299–310

    Article  Google Scholar 

  • Koziol AM, Newton RC (1989) Grossular activity-composition relationships in ternary garnets determined by reversed displaced-equilibrium experiments. Contrib Mineral Petrol 103(4):423–433

    Article  Google Scholar 

  • Lave J, Avouac J-P (2001) Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J Geophys Res B Solid Earth 186:26561–26591

    Article  Google Scholar 

  • Le Breton N, Thompson AB (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib Mineral Petrol 99:226–237

    Article  Google Scholar 

  • Le Fort P (1975) Himalayas: the collided range. Present knowledge of the continental arc. Am J Sci 275-a:1–44

    Google Scholar 

  • Macfarlane AM (1995) An evaluation of the inverted metamorphic gradient at Langtang National Park, central Nepal Himalaya. J Metamorph Geol 13(5):595–612

    Article  Google Scholar 

  • Mallet FR (1874) On the geology and mineral resources of the Darjiling district and the Western Duars. Mem Geol Surv India 11:1–50

    Google Scholar 

  • Martin AJ (2009) Sub-millimeter heterogeneity of yttrium and chromium during growth of semi-pelitic garnet: Journal of Petrology. doi:10.1093/petrology/egp050

  • Martin AJ, DeCelles PG, Gehrels GE, Patchett PJ, Isachsen C (2005) Isotopic and structural constraints on the location of the Main Central thrust in the Annapurna Range, central Nepal Himalaya. Geol Soc Am Bull 117:926–944. doi:10.1130/B25646.1

    Article  Google Scholar 

  • Martin AJ, Gehrels GE, DeCelles PG (2007) The tectonic significance of (U, Th)/Pb ages of monazite inclusions in garnet from the Himalaya of central Nepal. Chem Geol 244:1–24. doi:10.1016/j.chemgeo.2007.05.003

    Article  Google Scholar 

  • Middlemiss CS (1887) Crystalline and metamorphic rocks of the Lower Himalaya, Garhwal and Kumaon. Records of the Geological Survey of India 20(3):134–143

    Google Scholar 

  • Mugnier JL, Mascle G, Faucher T (1993) Structure of the Siwaliks of western Nepal: an intracontinental accretionary prism. International Geology Review 35(1):1–16

    Article  Google Scholar 

  • Murphy MA, Yin A (2003) Structural evolution and sequence of thrusting in the Tethyan fold-thrust belt and Indus-Yalu suture zone, Southwest Tibet. Geol Soc Am Bull 115(1):21–34

    Article  Google Scholar 

  • Myrow PM, Hughes NC, Paulsen TS, Williams IS, Parcha SK, Thompson KR, Bowring SA, Peng SC, Ahluwalia AD (2003) Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth Planet Sci Lett 212(3–4):433–441

    Article  Google Scholar 

  • Parrish RR, Hodges KV (1996) Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya. Geol Soc Am Bull 108(7):904–911

    Article  Google Scholar 

  • Paudel LP, Arita K (2000) Tectonic and polymetamorphic history of the Lesser Himalaya in central Nepal. J Asian Earth Sci 18(5):561–584

    Article  Google Scholar 

  • Pearson ON (2002) Structural evolution of the central Nepal fold-thrust belt and regional tectonic and structural significance of the Ramgarh thrust. Ph.D. Dissertation, University of Arizona, p 231

  • Pearson ON, DeCelles PG (2005) Structural geology and regional tectonic significance of the Ramgarh thrust, Himalayan fold-thrust belt of Nepal. Tectonics 24:TC4008. doi:10.1029/2003TC001617

  • Pecher A (1989) The metamorphism in the central Himalaya. J Metamorph Geol 7(1):31–41

    Article  Google Scholar 

  • Powers PM, Lillie RJ, Yeats RS (1998) Structure and shortening of the Kangra and Dehra Dun reentrants, Sub-Himalaya, India. Geol Soc Am Bull 110(8):1010–1027

    Article  Google Scholar 

  • Pownceby MI, Wall VJ, O’Neill HSC (1991) An experimental study of the effect of Ca upon garnet–ilmenite Fe-Mn exchange equilibria. Am Mineral 76(9–10):1580–1588

    Google Scholar 

  • Quade J, Cater JML, Ojha TP, Adam J, Harrison TM (1995) Late Miocene environmental change in Nepal and the northern Indian subcontinent: stable isotopic evidence from paleosols. Geol Soc Am Bull 107(12):1381–1397

    Article  Google Scholar 

  • Ratschbacher L, Frisch W, Liu G, Chen C (1994) Distributed deformation in southern and western Tibet during and after the India-Asia collision. J Geophys Res 99(B10):19917–19945

    Article  Google Scholar 

  • Reddy SA, Searle MP, Massey JA (1993) Structural evolution of the High Himalayan gneiss sequence, Langtang Valley, Nepal. In: Treloar PJ, Searle MP (eds) Himalayan tectonics. Geological Society Special Publication. Geological Society of London, London, pp 375–389

    Google Scholar 

  • Robinson DM (2008) Forward modeling the kinematic sequence of the central Himalayan thrust belt, western Nepal. Geosphere 4:785–801. doi:10.1130/GES00163.1

    Article  Google Scholar 

  • Robinson DM, DeCelles PG, Patchett PJ, Garzione CN (2001) The kinematic evolution of the Nepalese Himalaya interpreted from Nd isotopes. Earth Planet Sci Lett 192(4):507–521

    Article  Google Scholar 

  • Robinson DM, DeCelles PG, Garzione CN, Pearson ON, Harrison TM, Catlos EJ (2003) Kinematic model for the Main Central Thrust in Nepal. Geology 31(4):359–362

    Article  Google Scholar 

  • Robinson DM, DeCelles PG, Copeland P (2006) Tectonic evolution of the Himalayan thrust belt in western Nepal: Implications for channel flow models. Geol Soc Am Bull 118:865–885. doi:10.1130/B25911.1

    Article  Google Scholar 

  • Sakai H (1983) Geology of the Tansen Group of the Lesser Himalaya in Nepal. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology 25(1):27–74

    Google Scholar 

  • Searle MP, Godin L (2003) The South Tibetan detachment and the Manaslu Leucogranite: a structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal. J Geol 111(5):505–523

    Article  Google Scholar 

  • Searle MP, Simpson RL, Law RD, Parrish RR, Waters DJ (2003) The structural geometry, metamorphic and magmatic evolution of the Everest Massif, High Himalaya of Nepal-South Tibet. J Geol Soc London 160(3):345–366

    Article  Google Scholar 

  • Searle MP, Law RD, Godin L, Larson K, Streule MJ, Cottle JM, Jessup MJ (2008) Defining the Himalayan Main Central thrust in Nepal. J Geol Soc London 165:523–534. doi:10.1144/0016-76492007-081

    Article  Google Scholar 

  • Sorkhabi RB, Macfarlane A (1999) Himalaya and Tibet: mountain roots to mountain tops. In: Macfarlane A, Sorkhabi RB, Quade J (eds) Himalaya and Tibet: mountain roots to mountain tops: special Paper—Geological Society of America. United States, Geological Society of America (GSA), Boulder, CO, pp 1–7

    Chapter  Google Scholar 

  • Spear FS (1991) On the interpretation of peak metamorphic temperatures in light of garnet diffusion during cooling. J Metamorph Geol 9:379–388

    Article  Google Scholar 

  • Spear FS (1995) Metamorphic phase equilibria and pressure–temperature–time paths. Mineralogical Society of America Monograph, Washington, DC, p 799

  • Srivastava P, Mitra G (1994) Thrust geometries and deep structure of the outer and lesser Himalaya, Kumaon and Garhwal (India): implications for evolution of the Himalayan fold-and-thrust belt. Tectonics 13(1):89–109

    Article  Google Scholar 

  • Stephenson BJ, Waters DJ, Searle MP (2000) Inverted metamorphism and the Main Central Thrust: field relations and thermobarometric constraints from the Kishtwar Window, NW Indian Himalaya. J Metamorph Geol 18(5):571–590

    Article  Google Scholar 

  • Todd CS (1998) Limits on the precision of geobarometry at low grossular and anorthite content. Am Mineral 83:1161–1167

    Google Scholar 

  • Upreti BN (1996) Stratigraphy of the western Nepal Lesser Himalaya, a synthesis. J Nepal Geol Soc 13:11–28

    Google Scholar 

  • Vannay JC, Hodges KV (1996) Tectonometamorphic evolution of the Himalayan metamorphic core between the Annapurna and Dhaulagiri, central Nepal. J Metamorph Geol 14(5):635–656

    Article  Google Scholar 

  • Webb AAG, Yin A, Harrison TM, Celerier J, Burgess WP (2007) The leading edge of the Greater Himalayan Crystalline complex revealed in the NW Indian Himalaya: Implications for the evolution of the Himalayan orogen. Geology 35:955–958. doi:10.1130/G23931A.1

    Article  Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev 76:1–131. doi:10.1016/j.earscirev.2005.05.004

    Article  Google Scholar 

  • Zhu C, Sverjensky DA (1992) F-Cl-OH partitioning between biotite and apatite. Geochim Cosmochim Acta 56(9):3435–3467

    Article  Google Scholar 

Download references

Acknowledgments

We thank Steven Kidder, Martin Herrmann, Mark Barton, Kenneth Domanik, Philip Piccoli, Sumit Chakraborty, Tank Ojha, and the staff of Himalayan Experience for their indispensable assistance. We thank Mary Leech, Donna Whitney, and four anonymous reviewers for constructive reviews and Timothy Grove for editorial handling. Supported by National Science Foundation grant EAR-0207179. A.J.M. was supported by the Geological Society of America, American Association of Petroleum Geologists, Department of Geosciences at the University of Arizona, and ExxonMobil as a donor to the Geostructure Partnership at the University of Arizona.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron J. Martin.

Additional information

Communicated by T.L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1 (XLS 20 kb)

Table S2 (XLS 64 kb)

Table S3 (XLS 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, A.J., Ganguly, J. & DeCelles, P.G. Metamorphism of Greater and Lesser Himalayan rocks exposed in the Modi Khola valley, central Nepal. Contrib Mineral Petrol 159, 203–223 (2010). https://doi.org/10.1007/s00410-009-0424-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0424-3

Keywords

Navigation