Skip to main content

Advertisement

Log in

Homeobox, Wnt, and Fibroblast Growth Factor Signaling is Augmented During Alveogenesis in Mice Lacking Superoxide Dismutase 3, Extracellular

  • Airway Biology
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Superoxide dismutase 3, extracellular (SOD3) polymorphisms have been implicated in reduced pulmonary function development and altered risk for chronic obstructive pulmonary disease. We previously reported that gene-targeted Sod3−/− mice have impaired lung function and human SOD3 variants are associated with reduced pulmonary function in children. Reduced lung SOD3 levels were reported in mice with lower lung function with the greatest difference occurring during alveogenesis phase [postnatal (P) days 14–28]. Interactions between homeobox (HOX), wingless-type MMTV integration site member (WNT), and fibroblast growth factor (FGF) signaling govern complex developmental processes in several organs. A subset of HOX family members, HOXA5 and HOXB5, is expressed in the developing lung. Therefore, in this study we assessed the transcript expression of these family members and their downstream targets in Sod3−/− mice during alveogenesis (P14). In the lung of Sod3−/− mice, Hoxa5 and Hoxb5 increased. These transcription factors regulate WNT gene expression and were accompanied by increases in their downstream targets Wnt2 and Wnt5A, canonical and noncanonical WNT members, respectively. The WNT signaling target, lymphoid enhancer binding factor 1 (Lef1), also increased along with its downstream targets Fgf2, Fgf7, and Fgf10 in the lungs of Sod3−/− mice. Due to limited knowledge on the role of FGF2 in lung development, we further examined FGF2 protein and found increased levels in the bronchial and alveolar type II epithelial cells of Sod3−/− mice compared to age-matched controls. Thus, our findings suggest that deficient management of extracellular superoxide can lead to altered lung developmental signaling during alveogenesis in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Krauss-Etschmann S, Bush A, Bellusci S, Brusselle GG, Dahlén SE, Dehmel S, Eickelberg O, Gibson G, Hylkema MN, Knaus P, Königshoff M, Lloyd CM, Macciarini P, Mailleux A, Marsland BJ, Postma DS, Roberts G, Samakovlis C, Stocks J, Vandesompele J, Wjst M, Holloway J (2013) Of flies, mice and men: a systematic approach to understanding the early life origins of chronic lung disease. Thorax 68(4):380–384. doi:10.1136/thoraxjnl-2012-201902

    Article  PubMed  Google Scholar 

  2. Stocks J, Hislop A, Sonnappa S (2013) Early lung development: life long effect on respiratory health and disease. Lancet Respir Medicine 1(9):728–742. doi:10.1016/s2213-2600(13)70118-8

    Article  Google Scholar 

  3. Lange P, Celli B, Agusti A, Boje Jensen G, Divo M, Faner R, Guerra S, Marott JL, Martinez FD, Martinez-Camblor P, Meek P, Owen CA, Petersen H, Pinto-Plata V, Schnohr P, Sood A, Soriano JB, Tesfaigzi Y, Vestbo J (2015) Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med 373(2):111–122. doi:10.1056/NEJMoa1411532

    Article  CAS  PubMed  Google Scholar 

  4. Poonyagariyagorn HK, Metzger S, Dikeman D, Mercado AL, Malinina A, Calvi C, McGrath-Morrow S, Neptune ER (2014) Superoxide dismutase 3 dysregulation in a murine model of neonatal lung injury. Am J Respir Cell Mol Biol 51(3):380–390. doi:10.1165/rcmb.2013-0043OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yao H, Arunachalam G, Hwang JW, Chung S, Sundar IK, Kinnula VL, Crapo JD, Rahman I (2010) Extracellular superoxide dismutase protects against pulmonary emphysema by attenuating oxidative fragmentation of ECM. Proc Natl Acad Sci USA 107(35):15571–15576. doi:10.1073/pnas.1007625107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Poonyagariyagorn HK, Metzger S, Dikeman D, Lopez-Mercado A, Malinina A, McGrath-Morrow S, Neptune ER (2012) Extracellular superoxide dismutase (sod3) deficiency contributes to durable effects of neonatal hyperoxic lung injury [abstract]. Am J Respir Crit Care Med 185:A1278

    Google Scholar 

  7. Ganguly K, Depner M, Fattman C, Bein K, Oury TD, Wesselkamper SC, Borchers MT, Schreiber M, Gao F, von Mutius E, Kabesch M, Leikauf GD, Schulz H (2009) Superoxide dismutase 3, extracellular (SOD3) variants and lung function. Physiol Genomics 37(3):260–267. doi:10.1152/physiolgenomics.90363.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ganguly K, Stoeger T, Wesselkamper SC, Reinhard C, Sartor MA, Medvedovic M, Tomlinson CR, Bolle I, Mason JM, Leikauf GD, Schulz H (2007) Candidate genes controlling pulmonary function in mice: transcript profiling and predicted protein structure. Physiol Genomics 31. doi:10.1152/physiolgenomics.00260.2006

  9. Dahl M (2008) Biomarkers for chronic obstructive pulmonary disease. Am J Respir Crit Care Med 177(11):1177–1178. doi:10.1164/rccm.200802-225ED

    Article  PubMed  Google Scholar 

  10. Siedlinski M, Tingley D, Lipman PJ, Cho MH, Litonjua AA, Sparrow D, Bakke P, Gulsvik A, Lomas DA, Anderson W, Kong X, Rennard SI, Beaty TH, Hokanson JE, Crapo JD, Lange C, Silverman EK, The COPDGene and ECLIPSE Investigators (2013) Dissecting direct and indirect genetic effects on chronic obstructive pulmonary disease (COPD) susceptibility. Hum Genet 132(4):431–441. doi:10.1007/s00439-012-1262-3

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ganguly K, Martin TM, Concel VJ, Upadhyay S, Bein K, Brant KB, George L, Mitra A, Thimraj TA, Fabisiak JP, Vuga LJ, Fatman C, Kaminski N, Schulz H, Leikauf GD (2014) Secreted phosphoprotein 1 (Spp1) is a determinant of lung function development in mice. Am J Respir Cell Mol Biol 51(5):637–651

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ganguly K, Upadhyay S, Irmler M, Takenaka S, Pukelsheim K, Beckers J, Hamelmann E, Schulz H, Stoeger T (2009) Pathway focused protein profiling indicates differential function for IL-1B, -18 and VEGF during initiation and resolution of lung inflammation evoked by carbon nanoparticle exposure in mice. Part Fibre Toxicol 6(1):1–14. doi:10.1186/1743-8977-6-31

    Article  Google Scholar 

  13. Hrycaj SM, Dye BR, Baker NC, Larsen BM, Burke AC, Spence JR, Wellik DM (2015) Hox5 genes regulate the Wnt2/2b-Bmp4-signaling axis during lung development. Cell Rep 12(6):903–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yin Y, White AC, Huh SH, Hilton MJ, Kanazawa H, Long F, Ornitz DM (2008) An FGF-WNT gene regulatory network controls lung mesenchyme development. Dev Biol 319(2):426–436. doi:10.1016/j.ydbio.2008.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li C, Hu L, Xiao J, Chen H, Li JT, Bellusci S, Delanghe S, Minoo P (2005) Wnt5a regulates Shh and Fgf10 signaling during lung development. Dev Biol 287(1):86–97. doi:10.1016/j.ydbio.2005.08.035

    Article  CAS  PubMed  Google Scholar 

  16. Perkins TN, Dentener MA, Stassen FR, Rohde GG, Mossman BT, Wouters EF, Reynaert NL (2016) Alteration of canonical and non-canonical WNT-signaling by crystalline silica in human lung epithelial cells. Toxicol Appl Pharmacol 301:61–70. doi:10.1016/j.taap.2016.04.003

    Article  CAS  PubMed  Google Scholar 

  17. Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BL (1997) Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124(23):4867–4878

    CAS  PubMed  Google Scholar 

  18. Lebeche D, Malpel S, Cardoso WV (1999) Fibroblast growth factor interactions in the developing lung. Mech Dev 86(1–2):125–136

    Article  CAS  PubMed  Google Scholar 

  19. Zhang M, Shi J, Huang Y, Lai L (2012) Expression of canonical WNT/β-CATENIN signaling components in the developing human lung. BMC Dev Biol 12(1):1–13. doi:10.1186/1471-213x-12-21

    Article  Google Scholar 

  20. Herring MJ, Putney LF, Wyatt G, Finkbeiner WE, Hyde DM (2014) Growth of alveoli during postnatal development in humans based on stereological estimation. Am J Physiol Lung Cell Mol Physiol 307:L338–L344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schittny JC, Mund SI, Stampanoni M (2008) Evidence and structural mechanism for late lung alveolarization. Am J Physiol Lung Cell Mol Physiol 294(2):L246–L254. doi:10.1152/ajplung.00296.2007

    Article  CAS  PubMed  Google Scholar 

  22. Nozik-Grayck E, Dieterle CS, Piantadosi CA, Enghild JJ, Oury TD (2000) Secretion of extracellular superoxide dismutase in neonatal lungs. Am J Physiol Lung Cell Mol Physiol 279(5):977–984

    Google Scholar 

  23. Petersen SV, Oury TD, Ostergaard L, Valnickova Z, Wegrzyn J, Thogersen IB, Jacobsen C, Bowler RP, Fattman CL, Crapo JD (2004) Extracellular superoxide dismutase (EC-SOD) binds to type I collagen and protects against oxidative fragmentation. J Biol Chem 279:13705–13710

    Article  CAS  PubMed  Google Scholar 

  24. Gao F, Koenitzer JR, Tobolewski JM, Jiang D, Liang J, Noble PW, Oury TD (2008) Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J Biol Chem 283:6058–6066

    Article  CAS  PubMed  Google Scholar 

  25. Kliment CR, Tobolewski JM, Manni ML, Tan RJ, Enghild J, Oury TD (2008) Extracellular superoxide dismutase protects against matrix degradation of heparan sulfate in the lung. Antioxid Redox Signal 10:261–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schaefer L (2014) Complexity of danger: the diverse nature of damage-associated molecular patterns. J Biol Chem 289(51):35237–35245. doi:10.1074/jbc.R114.619304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aubin J, Lemieux M, Tremblay M, Bérard J, Jeannotte L (1997) Early postnatal lethality in Hoxa-5 mutant mice is attributable to respiratory tract defects. Dev Biol 192:432–445

    Article  CAS  PubMed  Google Scholar 

  28. Boucherat O, Montaron S, Bérubé-Simard FA, Aubin J, Philippidou P, Wellik DM, Dasen JS, Jeannotte L (2013) Partial functional redundancy between Hoxa5 and Hoxb5 paralog genes during lung morphogenesis. Am J Physiol Lung Cell Mol Physiol 15:304

    Google Scholar 

  29. Monkley SJ, Delaney SJ, Pennisi DJ, Christiansen JH, Wainwright BJ (1996) Targeted disruption of the Wnt2 gene results in placentation defects. Development 122(11):3343–3353

    CAS  PubMed  Google Scholar 

  30. Goss AM, Tian Y, Tsukiyama T, Cohen ED, Zhou D, Lu MM, Yamaguchi TP, Morrisey EE (2009) Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell 17(2):290–298. doi:10.1016/j.devcel.2009.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li C, Xiao J, Hormi K, Borok Z, Minoo P (2002) Wnt5a participates in distal lung morphogenesis. Dev Biol 248(1):68–81

    Article  CAS  PubMed  Google Scholar 

  32. Duan D, Yue Y, Zhou W, Labed B, Ritchie TC, Grosschedl R, Engelhardt JF (1999) Submucosal gland development in the airway is controlled by lymphoid enhancer binding factor 1 (LEF1). Development 126 (20):4441–4453

    CAS  PubMed  Google Scholar 

  33. Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F (2002) Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22(4):1172–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leung JY, Kolligs FT, Wu R, Zhai Y, Kuick R, Hanash S, Cho KR, Fearon ER (2002) Activation of AXIN2 expression by beta-catenin-T cell factor. A feedback repressor pathway regulating Wnt signaling. J Biol Chem 277(24):21657–21665

    Article  CAS  PubMed  Google Scholar 

  35. El Agha E, Herold S, Al Alam D, Quantius J, MacKenzie B, Carraro G, Moiseenko A, Chao CM, Minoo P, Seeger W, Bellusci S (2014) Fgf10-positive cells represent a progenitor cell population during lung development and postnatally. Development 141:296–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Post M, Souza P, Liu J et al (1996) Keratinocyte growth factor and its receptor are involved in regulating early lung branching. Development 122:3107–3115

    CAS  PubMed  Google Scholar 

  37. Park W, Miranda B, Lebeche D, Hashimoto G, Cardoso W (1998) FGF-10 is a chemotactic factor for distal epithelial buds during lung development. Dev Biol 201(2):125–134

    Article  CAS  PubMed  Google Scholar 

  38. Volckaert T et al (2013) Localized Fgf10 expression is not required for lung branching morphogenesis but prevents differentiation of epithelial progenitors. Development 140(18):3731–3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weinstein M, Xu X, Ohyama K, Deng C (1998) FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 125:3615–3623

    CAS  PubMed  Google Scholar 

  40. Powell PP, Wang C, Horinouchi H (1998) Differential expression of fibroblast growth factor receptors 1 to 4 and ligand genes in late fetal and early postnatal rat lung. Am J Respir Cell Mol Biol 19(4):563–572

    Article  CAS  PubMed  Google Scholar 

  41. Cordon-Cardo C, Vlodavsky I, Haimovitz-Friedman A, Hicklin D, Fuks Z (1990) Expression of basic fibroblast growth factor in normal human tissues. Lab Invest 63(6):832–840

    CAS  PubMed  Google Scholar 

  42. Azhar M, Yin M, Zhou M, Li H, Mustafa M, Nusayr E, Keenan JB, Chen H, Pawlosky S, Gard C, Grisham C, Sanford LP, Doetschman T (2009) Gene targeted ablation of high molecular weight fibroblast growth factor-2. Dev Dyn 238(2):351–357. doi:10.1002/dvdy.21835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Matsui R, Brody JS, Yu Q (1999) FGF-2 induces surfactant protein gene expression in foetal rat lung epithelial cells through a MAPK-independent pathway. Cell Signal 11(3):221–228

    Article  CAS  PubMed  Google Scholar 

  44. Bonner JC, Badgett A, Lindroos PM, Coin PG (1996) Basic fibroblast growth factor induces expression of the PDGF receptor-alpha on human bronchial smooth muscle cells. Am J Physiol 271(6 Pt 1):L880–L888

    CAS  PubMed  Google Scholar 

  45. Bosse Y, Rola-Pleszczynski M (2008) FGF2 in asthmatic airway-smooth-muscle-cell hyperplasia. Trends Mol Med 14(1):3–11. doi:10.1016/j.molmed.2007.11.003

    Article  CAS  PubMed  Google Scholar 

  46. Lee BJ, Moon HG, Shin TS, Jeon SG, Lee EY, Gho YS, Lee CG, Zhu Z, Elias JA, Kim YK (2011) Protective effects of basic fibroblast growth factor in the development of emphysema induced by interferon-gamma. Exp Mol Med 43(4):169–178. doi:10.3858/emm.2011.43.4.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical assistance received from Joseph D. Latoche, Department of Environmental and Occupational Health, University of Pittsburgh, PA, USA. The authors also thank Dr. Cheryl L. Fattman for providing the gene-targeted Sod3−/−mice.

Author Contributions

HS, GDL, and KG conceived and designed the study; TAT, RLB, and KG performed the experiments; TAT, RLB, AM, HS, GDL, and KG analyzed and interpreted the data; TAT, HS, GDL, and KG wrote the manuscript.

Funding

This study was supported by DST SERB: SB/SO/AS-026/2013; Department of Biotechnology, Government of India: BT/PR12987/INF/22/205/2015, VINNOVA (2016-01951) (KG); NIH: NIEHS ES015675 (GDL); CSIR-SRF: [9/1045(0007) 2K14-EMR-1]; and Fulbright Nehru Doctoral Research Fellowship (IIE grantee ID 15151382) (TAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koustav Ganguly.

Ethics declarations

Conflict of interest

None.

Additional information

George D. Leikauf and Koustav Ganguly have contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4906 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thimraj, T.A., Birru, R.L., Mitra, A. et al. Homeobox, Wnt, and Fibroblast Growth Factor Signaling is Augmented During Alveogenesis in Mice Lacking Superoxide Dismutase 3, Extracellular. Lung 195, 263–270 (2017). https://doi.org/10.1007/s00408-017-9980-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-017-9980-x

Keywords

Navigation