Skip to main content

Advertisement

Log in

Reduced volume of the nucleus accumbens in heroin addiction

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

The neural mechanisms of heroin addiction are still incompletely understood, even though modern neuroimaging techniques offer insights into disease-related changes in vivo. While changes on cortical structure have been reported in heroin addiction, evidence from subcortical areas remains underrepresented. Functional imaging studies revealed that the brain reward system and particularly the nucleus accumbens (NAcc) play a pivotal role in the pathophysiology of drug addiction. The aim of this study was to investigate whether there was a volume difference of the NAcc in heroin addiction in comparison to healthy controls. A further aim was to correlate subcortical volumes with clinical measurements on negative affects in addiction. Thirty heroin-dependent patients under maintenance treatment with diacetylmorphine and twenty healthy controls underwent structural MRI scanning at 3T. Subcortical segmentation analysis was performed using FMRIB’s Integrated Registration and Segmentation Tool function of FSL. The State–Trait Anxiety Inventory and the Beck Depression Inventory were used to assess trait anxiety and depressive symptoms, respectively. A decreased volume of the left NAcc was observed in heroin-dependent patients compared to healthy controls. Depression score was negatively correlated with left NAcc volume in patients, whereas a positive correlation was found between the daily opioid dose and the volume of the right amygdala. This study indicates that there might be structural differences of the NAcc in heroin-dependent patients in comparison with healthy controls. Furthermore, correlations of subcortical structures with negative emotions and opioid doses might be of future relevance for the investigation of heroin addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Albertson DN, Schmidt CJ, Kapatos G, Bannon MJ (2006) Distinctive profiles of gene expression in the human nucleus accumbens associated with cocaine and heroin abuse. Neuropsychopharmacology 31:2304–2312

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Beck AT, Erbaugh J, Ward CH, Mock J, Mendelsohn M (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561

    Article  CAS  PubMed  Google Scholar 

  3. Bewernick BH, Hurlemann R, Matusch A, Kayser S, Grubert C, Hadrysiewicz B, Axmacher N, Lemke M, Cooper-Mahkorn D, Cohen MX, Brockmann H, Lenartz D, Sturm V, Schlaepfer TE (2010) Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry 67:110–116

    Article  PubMed  Google Scholar 

  4. Blum J, Gerber H, Gerhard U, Schmid O, Petitjean S, Riecher-Rossler A, Wiesbeck GA, Borgwardt SJ, Walter M (2013) Acute effects of heroin on emotions in heroin-dependent patients. Am J Addict 22:598–604

    Article  PubMed  Google Scholar 

  5. Bookstein FL (2001) “Voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage 14:1454–1462

    Article  CAS  PubMed  Google Scholar 

  6. Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157:115–118

    Article  CAS  PubMed  Google Scholar 

  7. Carlezon WA Jr, Thomas MJ (2009) Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology 56(Suppl 1):122–132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. de Jong LW, van der Hiele K, Veer IM, Houwing JJ, Westendorp RG, Bollen EL, de Bruin PW, Middelkoop HA, van Buchem MA, van der Grond J (2008) Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study. Brain 131:3277–3285

    Article  PubMed Central  PubMed  Google Scholar 

  9. Fang J, Gu JW, Yang WT, Qin XY, Hu YH (2012) Clinical observation of physiological and psychological reactions to electric stimulation of the amygdaloid nucleus and the nucleus accumbens in heroin addicts after detoxification. Chin Med J 125:63–66

    CAS  PubMed  Google Scholar 

  10. Franken IH, Kroon LY, Wiers RW, Jansen A (2000) Selective cognitive processing of drug cues in heroin dependence. J Psychopharmacol 14:395–400

    Article  CAS  PubMed  Google Scholar 

  11. Gerber H, Borgwardt SJ, Schmid O, Gerhard U, Joechle W, Riecher-Rossler A, Wiesbeck GA, Walter M (2012) The impact of diacetylmorphine on hypothalamic–pituitary–adrenal axis activity and heroin craving in heroin dependence. Eur Addict Res 18:116–123

    Article  PubMed  Google Scholar 

  12. Hannestad J, Taylor WD, McQuoid DR, Payne ME, Krishnan KR, Steffens DC, Macfall JR (2006) White matter lesion volumes and caudate volumes in late-life depression. Int J Geriatr Psychiatry 21:1193–1198

    Article  PubMed  Google Scholar 

  13. Hesse M (2006) The Beck Depression Inventory in patients undergoing opiate agonist maintenance treatment. Br J Clin Psychol 45:417–425

    Article  PubMed  Google Scholar 

  14. Koob GF (2009) Dynamics of neuronal circuits in addiction: reward, antireward, and emotional memory. Pharmacopsychiatry 42(Suppl 1):S32–S41

    Article  PubMed Central  PubMed  Google Scholar 

  15. Lai CH, Wu YT (2011) Duloxetine’s modest short-term influences in subcortical structures of first episode drug-naive patients with major depressive disorder and panic disorder. Psychiatry Res 194:157–162

    Article  CAS  PubMed  Google Scholar 

  16. LaLumiere RT, Kalivas PW (2008) Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J Neurosci 28:3170–3177

    Article  CAS  PubMed  Google Scholar 

  17. Li Q, Li W, Wang H, Wang Y, Zhang Y, Zhu J, Zheng Y, Zhang D, Wang L, Li Y, Yan X, Chang H, Fan M, Li Z, Tian J, Gold MS, Wang W, Liu Y (2014) Predicting subsequent relapse by drug-related cue-induced brain activation in heroin addiction: an event-related functional magnetic resonance imaging study. Addict Biol. doi:10.1111/adb.12182

    PubMed Central  Google Scholar 

  18. Li Q, Wang Y, Zhang Y, Li W, Yang W, Zhu J, Wu N, Chang H, Zheng Y, Qin W, Zhao L, Yuan K, Liu J, Wang W, Tian J (2012) Craving correlates with mesolimbic responses to heroin-related cues in short-term abstinence from heroin: an event-related fMRI study. Brain Res 1469:63–72

    Article  CAS  PubMed  Google Scholar 

  19. Liu H, Hao Y, Kaneko Y, Ouyang X, Zhang Y, Xu L, Xue Z, Liu Z (2009) Frontal and cingulate gray matter volume reduction in heroin dependence: optimized voxel-based morphometry. Psychiatry Clin Neurosci 63:563–568

    Article  PubMed  Google Scholar 

  20. Liu H, Li L, Hao Y, Cao D, Xu L, Rohrbaugh R, Xue Z, Hao W, Shan B, Liu Z (2008) Disrupted white matter integrity in heroin dependence: a controlled study utilizing diffusion tensor imaging. Am J Drug Alcohol Abuse 34:562–575

    Article  PubMed  Google Scholar 

  21. Liu X, Matochik JA, Cadet JL, London ED (1998) Smaller volume of prefrontal lobe in polysubstance abusers: a magnetic resonance imaging study. Neuropsychopharmacology 18:243–252

    Article  CAS  PubMed  Google Scholar 

  22. Lyoo IK, Pollack MH, Silveri MM, Ahn KH, Diaz CI, Hwang J, Kim SJ, Yurgelun-Todd DA, Kaufman MJ, Renshaw PF (2006) Prefrontal and temporal gray matter density decreases in opiate dependence. Psychopharmacology 184:139–144

    Article  CAS  PubMed  Google Scholar 

  23. Ma N, Liu Y, Fu XM, Li N, Wang CX, Zhang H, Qian RB, Xu HS, Hu X, Zhang DR (2011) Abnormal brain default-mode network functional connectivity in drug addicts. PLoS One 6:e16560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ma N, Liu Y, Li N, Wang CX, Zhang H, Jiang XF, Xu HS, Fu XM, Hu X, Zhang DR (2010) Addiction related alteration in resting-state brain connectivity. Neuroimage 49:738–744

    Article  PubMed Central  PubMed  Google Scholar 

  25. Machado-de-Sousa JP, de Lima Osorio F, Jackowski AP, Bressan RA, Chagas MH, Torro-Alves N, Depaula AL, Crippa JA, Hallak JE (2014) Increased amygdalar and hippocampal volumes in young adults with social anxiety. PLoS One 9:e88523

    Article  PubMed Central  PubMed  Google Scholar 

  26. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, Jerabek PA (2000) Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 48:830–843

    Article  CAS  PubMed  Google Scholar 

  27. Meredith GE, Baldo BA, Andrezjewski ME, Kelley AE (2008) The structural basis for mapping behavior onto the ventral striatum and its subdivisions. Brain Struct Funct 213:17–27

    Article  PubMed Central  PubMed  Google Scholar 

  28. Nestler EJ, Malenka RC (2004) The addicted brain. Sci Am 290:78–85

    Article  CAS  PubMed  Google Scholar 

  29. Nugent AC, Luckenbaugh DA, Wood SE, Bogers W, Zarate CA Jr, Drevets WC (2012) Automated subcortical segmentation using first: test–retest reliability, interscanner reliability, and comparison to manual segmentation. Hum Brain Mapp 34:2313–2329

    Article  PubMed Central  PubMed  Google Scholar 

  30. Oviedo-Joekes E, Brissette S, Marsh DC, Lauzon P, Guh D, Anis A, Schechter MT (2009) Diacetylmorphine versus methadone for the treatment of opioid addiction. N Engl J Med 361:777–786

    Article  CAS  PubMed  Google Scholar 

  31. Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56:907–922

    Article  PubMed Central  PubMed  Google Scholar 

  32. Qiu Y, Jiang G, Su H, Lv X, Zhang X, Tian J, Zhuo F (2013) Progressive white matter microstructure damage in male chronic heroin dependent individuals: a DTI and TBSS study. PLoS One 8:e63212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Qiu YW, Han LJ, Lv XF, Jiang GH, Tian JZ, Zhuo FZ, Su HH, Lin CL, Zhang XL (2011) Regional homogeneity changes in heroin-dependent individuals: resting-state functional MR imaging study. Radiology 261:551–559

    Article  PubMed  Google Scholar 

  34. Qiu YW, Jiang GH, Su HH, Lv XF, Tian JZ, Li LM, Zhuo FZ (2013) The impulsivity behavior is correlated with prefrontal cortex gray matter volume reduction in heroin-dependent individuals. Neurosci Lett 538:43–48

    Article  CAS  PubMed  Google Scholar 

  35. Quade D (1967) Rank analysis of covariance. J Am Stat Assoc 62:1187–1200

    Article  Google Scholar 

  36. Resendez SL, Dome M, Gormley G, Franco D, Nevarez N, Hamid AA, Aragona BJ (2013) Mu-opioid receptors within subregions of the striatum mediate pair bond formation through parallel yet distinct reward mechanisms. J Neurosci 33:9140–9149

    Article  CAS  PubMed  Google Scholar 

  37. Robinson TE, Kolb B (1999) Morphine alters the structure of neurons in the nucleus accumbens and neocortex of rats. Synapse 33:160–162

    Article  CAS  PubMed  Google Scholar 

  38. Russo SJ, Nestler EJ (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci 14:609–625

    Article  CAS  PubMed  Google Scholar 

  39. Schmidt A, Borgwardt S, Gerber H, Wiesbeck GA, Schmid O, Riecher-Rossler A, Smieskova R, Lang UE, Walter M (2014) Acute effects of heroin on negative emotional processing: relation of amygdala activity and stress-related responses. Biol Psychiatry 76:289–296

    Article  CAS  PubMed  Google Scholar 

  40. Shen Y, Wang E, Wang X, Lou M (2012) Disrupted integrity of white matter in heroin-addicted subjects at different abstinent time. J Addict Med 6:172–176

    Article  PubMed  Google Scholar 

  41. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219

    Article  PubMed  Google Scholar 

  42. Spielberger CD (1983) Manual for the State-Trait Anxiety Inventory (STAI). Santa Clara, PaloAlto

    Google Scholar 

  43. Sun J, Bi J, Chan G, Oslin D, Farrer L, Gelernter J, Kranzler HR (2012) Improved methods to identify stable, highly heritable subtypes of opioid use and related behaviors. Addict Behav 37:1138–1144

    Article  PubMed Central  PubMed  Google Scholar 

  44. Szczytkowski JL, Fuchs RA, Lysle DT (2011) Ventral tegmental area-basolateral amygdala-nucleus accumbens shell neurocircuitry controls the expression of heroin-conditioned immunomodulation. J Neuroimmunol 237:47–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Tiffany ST (1999) Cognitive concepts of craving. Alcohol Res Health 23:215–224

    CAS  PubMed  Google Scholar 

  46. Upadhyay J, Maleki N, Potter J, Elman I, Rudrauf D, Knudsen J, Wallin D, Pendse G, McDonald L, Griffin M, Anderson J, Nutile L, Renshaw P, Weiss R, Becerra L, Borsook D (2010) Alterations in brain structure and functional connectivity in prescription opioid-dependent patients. Brain 133:2098–2114

    Article  PubMed Central  PubMed  Google Scholar 

  47. Vogel M, Knopfli B, Schmid O, Prica M, Strasser J, Prieto L, Wiesbeck GA, Dursteler-Macfarland KM (2013) Treatment or “high”: benzodiazepine use in patients on injectable heroin or oral opioids. Addict Behav 38:2477–2484

    Article  PubMed  Google Scholar 

  48. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F (2011) Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci USA 108:15037–15042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Wacker J, Dillon DG, Pizzagalli DA (2009) The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: integration of resting EEG, fMRI, and volumetric techniques. Neuroimage 46:327–337

    Article  PubMed Central  PubMed  Google Scholar 

  50. Walter M, Denier N, Gerber H, Schmid O, Lanz C, Brenneisen R, Riecher-Rossler A, Wiesbeck GA, Scheffler K, Seifritz E, McGuire P, Fusar-Poli P, Borgwardt S (2014) Orbitofrontal response to drug-related stimuli after heroin administration. Addict Biol. doi:10.1111/adb.12145

    Google Scholar 

  51. Walter M, Gerber H, Kuhl HC, Schmid O, Joechle W, Lanz C, Brenneisen R, Schachinger H, Riecher-Rossler A, Wiesbeck GA, Borgwardt SJ (2013) Acute effects of intravenous heroin on the hypothalamic–pituitary–adrenal axis response: a controlled trial. J Clin Psychopharmacol 33:193–198

    Article  CAS  PubMed  Google Scholar 

  52. Walter M, Wiesbeck GA, Degen B, Albrich J, Oppel M, Schulz A, Schachinger H, Dursteler-MacFarland KM (2011) Heroin reduces startle and cortisol response in opioid-maintained heroin-dependent patients. Addict Biol 16:145–151

    Article  CAS  PubMed  Google Scholar 

  53. Wang X, Li B, Zhou X, Liao Y, Tang J, Liu T, Hu D, Hao W (2012) Changes in brain gray matter in abstinent heroin addicts. Drug Alcohol Depend 126:304–308

    Article  CAS  PubMed  Google Scholar 

  54. Wheeler AL, Lerch JP, Chakravarty MM, Friedel M, Sled JG, Fletcher PJ, Josselyn SA, Frankland PW (2013) Adolescent cocaine exposure causes enduring macroscale changes in mouse brain structure. J Neurosci 33:1797–1803

    Article  CAS  PubMed  Google Scholar 

  55. Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, Beckmann C, Jenkinson M, Smith SM (2009) Bayesian analysis of neuroimaging data in fsl. Neuroimage 45:S173–S186

    Article  PubMed  Google Scholar 

  56. Yuan K, Qin W, Dong M, Liu J, Liu P, Zhang Y, Sun J, Wang W, Wang Y, Li Q, Yang W, Tian J (2010) Combining spatial and temporal information to explore resting-state networks changes in abstinent heroin-dependent individuals. Neurosci Lett 475:20–24

    Article  CAS  PubMed  Google Scholar 

  57. Yuan K, Qin W, Dong M, Liu J, Sun J, Liu P, Zhang Y, Wang W, Wang Y, Li Q, Zhao L, von Deneen KM, Liu Y, Gold MS, Tian J (2010) Gray matter deficits and resting-state abnormalities in abstinent heroin-dependent individuals. Neurosci Lett 482:101–105

    Article  CAS  PubMed  Google Scholar 

  58. Yuan Y, Zhu Z, Shi J, Zou Z, Yuan F, Liu Y, Lee TM, Weng X (2009) Gray matter density negatively correlates with duration of heroin use in young lifetime heroin-dependent individuals. Brain Cogn 71:223–228

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Swiss National Science Foundation (SNSF) (32003B-127544). We would like to acknowledge the infrastructural support of the Medical Image Analysis Centre, University Hospital Basel.

Conflict of interest

Till Sprenger served on advisory boards for Mitsubishi Pharma, Eli Lilly, Genzyme, Novartis, Biogen and Allergan. The other authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian L. Seifert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seifert, C.L., Magon, S., Sprenger, T. et al. Reduced volume of the nucleus accumbens in heroin addiction. Eur Arch Psychiatry Clin Neurosci 265, 637–645 (2015). https://doi.org/10.1007/s00406-014-0564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-014-0564-y

Keywords

Navigation